120 research outputs found

    Pembukaan Lahan Perkebunan Perspektif Undang-undang Nomor 5 Tahun 1960 Tentang Peraturan Dasar Pokok Agraria (Studi terhadap Pembukaan Lahan Perkebunan Lada di Desa Pasirputih, Kecamatan Tukak Sadai, Kabupaten Bangka Selatan)

    Get PDF
    Most People around this country must have their own ways and mechanism for land issues before the form of written legislation is being publicized including people in Bangka Island. For example, the plantation land in Pasirputih Village, Tukak Sadai District, South Bangka Regency is arranged orderly. There are several requirements that must be obey in order to open the plantation land, such as they must be ‘herenteng' (equal) between one plantation land and others. Besides, there are several prohibitions when opening the plantation land that shouldn't be break by the people, those are ‘apit' and ‘kaet'. These prohibitions are not written, but still being obeyed by the people. Something that is still maintained in this area is interesting to examine from the perspective of law number 5 of 1960 that is concerning the Basic Regulations of Agrarian (UUPA)

    A conserved phosphorylation site regulates the transcriptional function of ETHYLENE-INSENSITIVE3-like1 in tomato

    Get PDF
    ETHYLENE-INSENSITIVE3/ETHYLENE-INSENSITIVE3-like (EIN3/EIL) transcription factors are important downstream components of the ethylene transduction pathway known to regulate the transcription of early ethylene-responsive genes in plants. Previous studies have shown that phosphorylation can repress their transcriptional activity by promoting protein degradation. The present study identifies a new phosphorylation region named EPR1 (EIN3/EIL phosphorylation region 1) in tomato EIL1 proteins. The functional significance of EPR1 was tested by introducing mutations in this region of the Sl-EIL1 gene and by expressing these mutated versions in transgenic tomato plants. Transient expression data and phenotypic analysis of the transgenic lines indicated that EPR1 is essential for the transcriptional activity of Sl-EIL1. Moreover, mutation in the EPR1 site that prevents phosphorylation abolishes ethylene constitutive responses normally displayed by the Sl-EIL1-overexpressing lines. Bimolecular fluorescence complementation (BiFC) studies showed that the presence of a functional phosphorylation site within EPR1 is instrumental in the dimerization of Sl-EIL1 proteins. The results illuminate a new molecular mechanism for the control of EIN3/EIL activity and propose a model where phosphorylation within the EPR1 promotes the dimerization process allowing the initiation of EIL-mediated transcription of early ethylene-regulated genes

    Development of Full-Length cDNAs from Chinese Cabbage (Brassica rapa Subsp. pekinensis) and Identification of Marker Genes for Defence Response

    Get PDF
    Arabidopsis belongs to the Brassicaceae family and plays an important role as a model plant for which researchers have developed fine-tuned genome resources. Genome sequencing projects have been initiated for other members of the Brassicaceae family. Among these projects, research on Chinese cabbage (Brassica rapa subsp. pekinensis) started early because of strong interest in this species. Here, we report the development of a library of Chinese cabbage full-length cDNA clones, the RIKEN BRC B. rapa full-length cDNA (BBRAF) resource, to accelerate research on Brassica species. We sequenced 10 000 BBRAF clones and confirmed 5476 independent clones. Most of these cDNAs showed high homology to Arabidopsis genes, but we also obtained more than 200 cDNA clones that lacked any sequence homology to Arabidopsis genes. We also successfully identified several possible candidate marker genes for plant defence responses from our analysis of the expression of the Brassica counterparts of Arabidopsis marker genes in response to salicylic acid and jasmonic acid. We compared gene expression of these markers in several Chinese cabbage cultivars. Our BBRAF cDNA resource will be publicly available from the RIKEN Bioresource Center and will help researchers to transfer Arabidopsis-related knowledge to Brassica crops

    BART Inhibits Pancreatic Cancer Cell Invasion by PKCα Inactivation through Binding to ANX7

    Get PDF
    A novel function for the binder of Arl two (BART) molecule in pancreatic cancer cells is reported. BART inhibits invasiveness of pancreatic cancer cells through binding to a Ca2+-dependent, phosphorylated, guanosine triphosphatase (GTPase) membrane fusion protein, annexin7 (ANX7). A tumor suppressor function for ANX7 was previously reported based on its prognostic role in human cancers and the cancer-prone mouse phenotype ANX7(+/−). Further investigation demonstrated that the BART–ANX7 complex is transported toward cell protrusions in migrating cells when BART supports the binding of ANX7 to the protein kinase C (PKC) isoform PKCα. Recent evidence has suggested that phosphorylation of ANX7 by PKC significantly potentiates ANX7-induced fusion of phospholipid vesicles; however, the current data suggest that the BART–ANX7 complex reduces PKCα activity. Knocking down endogenous BART and ANX7 increases activity of PKCα, and specific inhibitors of PKCα significantly abrogate invasiveness induced by BART and ANX7 knockdown. These results imply that BART contributes to regulating PKCα activity through binding to ANX7, thereby affecting the invasiveness of pancreatic cancer cells. Thus, it is possible that BART and ANX7 can distinctly regulate the downstream signaling of PKCα that is potentially relevant to cell invasion by acting as anti-invasive molecules

    Upstream regulatory architecture of rice genes: summarizing the baseline towards genus-wide comparative analysis of regulatory networks and allele mining

    Get PDF
    corecore