171 research outputs found

    Saturation properties and incompressibility of nuclear matter: A consistent determination from nuclear masses

    Get PDF
    Starting with a two-body effective nucleon-nucleon interaction, it is shown that the infinite nuclear matter model of atomic nuclei is more appropriate than the conventional Bethe-Weizsacker like mass formulae to extract saturation properties of nuclear matter from nuclear masses. In particular, the saturation density thus obtained agrees with that of electron scattering data and the Hartree-Fock calculations. For the first time using nuclear mass formula, the radius constant r0r_0=1.138 fm and binding energy per nucleon ava_v = -16.11 MeV, corresponding to the infinite nuclear matter, are consistently obtained from the same source. An important offshoot of this study is the determination of nuclear matter incompressibility K∞K_{\infty} to be 288±\pm 28 MeV using the same source of nuclear masses as input.Comment: 14 latex pages, five figures available on request ( to appear in Phy. Rev. C

    RPA vs. exact shell-model correlation energies

    Full text link
    The random phase approximation (RPA) builds in correlations left out by mean-field theory. In full 0-hbar-omega shell-model spaces we calculate the Hartree-Fock + RPA binding energy, and compare it to exact diagonalization. We find that in general HF+RPA gives a very good approximation to the ``exact'' ground state energy. In those cases where RPA is less satisfactory, however, there is no obvious correlation with properties of the HF state, such as deformation or overlap with the exact ground state wavefunction.Comment: 6 pages, 7 figures, submitted to Phys Rev

    Scalar ground-state observables in the random phase approximation

    Get PDF
    We calculate the ground-state expectation value of scalar observables in the matrix formulation of the random phase approximation (RPA). Our expression, derived using the quasiboson approximation, is a straightforward generalization of the RPA correlation energy. We test the reliability of our expression by comparing against full diagonalization in 0 h-bar omega shell-model spaces. In general the RPA values are an improvement over mean-field (Hartree-Fock) results, but are not always consistent with shell-model results. We also consider exact symmetries broken in the mean-field state and whether or not they are restored in RPA.Comment: 7 pages, 3 figure

    Theoretical Aspects of Science with Radioactive Nuclear Beams

    Get PDF
    Physics of radioactive nuclear beams is one of the main frontiers of nuclear science today. Experimentally, thanks to technological developments, we are on the verge of invading the territory of extreme N/Z ratios in an unprecedented way. Theoretically, nuclear exotica represent a formidable challenge for the nuclear many-body theories and their power to predict nuclear properties in nuclear terra incognita. It is important to remember that the lesson learned by going to the limits of the nuclear binding is also important for normal nuclei from the neighborhood of the beta stability valley. And, of course, radioactive nuclei are crucial astrophysically; they pave the highway along which the nuclear material is transported up in the proton and neutron numbers during the complicated synthesis process in stars.Comment: 26 ReVTeX pages, 11 Postscript figures, uses epsf.sty, to be published in: Theme Issue on Science with Beams of Radioactive Nuclei, Philosophical Transactions, ed. by W. Gelletl

    Shell structure of superheavy nuclei in self-consistent mean-field models

    Get PDF
    We study the extrapolation of nuclear shell structure to the region of superheavy nuclei in self-consistent mean-field models -- the Skyrme-Hartree-Fock approach and the relativistic mean-field model -- using a large number of parameterizations. Results obtained with the Folded-Yukawa potential are shown for comparison. We focus on differences in the isospin dependence of the spin-orbit interaction and the effective mass between the models and their influence on single-particle spectra. While all relativistic models give a reasonable description of spin-orbit splittings, all non-relativistic models show a wrong trend with mass number. The spin-orbit splitting of heavy nuclei might be overestimated by 40%-80%. Spherical doubly-magic superheavy nuclei are found at (Z=114,N=184), (Z=120,N=172) or (Z=126,N=184) depending on the parameterization. The Z=114 proton shell closure, which is related to a large spin-orbit splitting of proton 2f states, is predicted only by forces which by far overestimate the proton spin-orbit splitting in Pb208. The Z=120 and N=172 shell closures predicted by the relativistic models and some Skyrme interactions are found to be related to a central depression of the nuclear density distribution. This effect cannot appear in macroscopic-microscopic models which have a limited freedom for the density distribution only. In summary, our findings give a strong argument for (Z=120,N=172) to be the next spherical doubly-magic superheavy nucleus.Comment: 22 pages REVTeX, 16 eps figures, accepted for publication in Phys. Rev.

    Cohomological tautness for Riemannian foliations

    Full text link
    In this paper we present some new results on the tautness of Riemannian foliations in their historical context. The first part of the paper gives a short history of the problem. For a closed manifold, the tautness of a Riemannian foliation can be characterized cohomologically. We extend this cohomological characterization to a class of foliations which includes the foliated strata of any singular Riemannian foliation of a closed manifold

    Pairing Properties In Relativistic Mean Field Models Obtained From Effective Field Theory

    Get PDF
    We apply recently developed effective field theory nuclear models in mean field approximation (parameter sets G1 and G2) to describe ground-state properties of nuclei from the valley of ÎČ\beta-stability up to the drip lines. For faster calculations of open-shell nuclei we employ a modified BCS approach which takes into account quasi-bound levels owing to their centrifugal barrier, with a constant pairing strength. We test this simple prescription by comparing with available Hartree-plus-Bogoliubov results. Using the new effective parameter sets we then compute separation energies, density distributions and spin--orbit potentials in isotopic (isotonic) chains of nuclei with magic neutron (proton) numbers. The new forces describe the experimental systematics similarly to conventional non-linear σ−ω\sigma-\omega relativistic force parameters like NL3.Comment: 29 pages, 17 figures, accepted for publication in PR

    Nuclear Ground State Observables and QCD Scaling in a Refined Relativistic Point Coupling Model

    Get PDF
    We present results obtained in the calculation of nuclear ground state properties in relativistic Hartree approximation using a Lagrangian whose QCD-scaled coupling constants are all natural (dimensionless and of order 1). Our model consists of four-, six-, and eight-fermion point couplings (contact interactions) together with derivative terms representing, respectively, two-, three-, and four-body forces and the finite ranges of the corresponding mesonic interactions. The coupling constants have been determined in a self-consistent procedure that solves the model equations for representative nuclei simultaneously in a generalized nonlinear least-squares adjustment algorithm. The extracted coupling constants allow us to predict ground state properties of a much larger set of even-even nuclei to good accuracy. The fact that the extracted coupling constants are all natural leads to the conclusion that QCD scaling and chiral symmetry apply to finite nuclei.Comment: 44 pages, 13 figures, 9 tables, REVTEX, accepted for publication in Phys. Rev.

    Modified differentials and basic cohomology for Riemannian foliations

    Full text link
    We define a new version of the exterior derivative on the basic forms of a Riemannian foliation to obtain a new form of basic cohomology that satisfies Poincar\'e duality in the transversally orientable case. We use this twisted basic cohomology to show relationships between curvature, tautness, and vanishing of the basic Euler characteristic and basic signature.Comment: 20 pages, references added, minor corrections mad

    Shell Corrections of Superheavy Nuclei in Self-Consistent Calculations

    Get PDF
    Shell corrections to the nuclear binding energy as a measure of shell effects in superheavy nuclei are studied within the self-consistent Skyrme-Hartree-Fock and Relativistic Mean-Field theories. Due to the presence of low-lying proton continuum resulting in a free particle gas, special attention is paid to the treatment of single-particle level density. To cure the pathological behavior of shell correction around the particle threshold, the method based on the Green's function approach has been adopted. It is demonstrated that for the vast majority of Skyrme interactions commonly employed in nuclear structure calculations, the strongest shell stabilization appears for Z=124, and 126, and for N=184. On the other hand, in the relativistic approaches the strongest spherical shell effect appears systematically for Z=120 and N=172. This difference has probably its roots in the spin-orbit potential. We have also shown that, in contrast to shell corrections which are fairly independent on the force, macroscopic energies extracted from self-consistent calculations strongly depend on the actual force parametrisation used. That is, the A and Z dependence of mass surface when extrapolating to unknown superheavy nuclei is prone to significant theoretical uncertainties.Comment: 14 pages REVTeX, 8 eps figures, submitted to Phys. Rev.
    • 

    corecore