467 research outputs found

    The Full Range of Predictions for B Physics From Iso-singlet Down Quark Mixing

    Get PDF
    We extend the range of predictions of the isosinglet (or vector) down quark model to the fully allowed physical ranges, and also update this with the effect of new physics constraints. We constrain the present allowed ranges of sin(2*beta) and sin(2*alpha), gamma, x_s, and A_{B_s}. In models allowing mixing to a new isosinglet down quark (as in E_6) flavor changing neutral currents are induced that allow a Z^0 mediated contribution to B-Bbar mixing and which bring in new phases. In (rho, eta), (x_s, sin(gamma)), and (x_s, A_{B_s}) plots for the extra isosinglet down quark model which are herein extended to the full physical range, we find new allowed regions that will require experiments on sin(gamma) and/or x_s to verify or to rule out an extra down quark contribution.Comment: 13 pages in RevTeX, 7 postscript figure

    Iso-singlet Down Quark Mixing And CP Violation Experiments

    Full text link
    We confront the new physics models with extra iso-singlet down quarks in the new CP violation experimental era with sin(2β)\sin{(2\beta)} and ϵ/ϵ\epsilon'/\epsilon measurements, K+π+ννˉK^+ \to \pi^+ \nu \bar{\nu} events, and xsx_s limits. The closeness of the new experimental results to the standard model theory requires us to include full SM amplitudes in the analysis. In models allowing mixing to a new isosinglet down quark, as in E6_6, flavor changing neutral currents are induced that allow a Z0Z^0 mediated contribution to BBˉB-\bar B mixing and which bring in new phases. In (ρ,η)(\rho,\eta), (xs,sin(γ))(x_s,\sin{(\gamma)}), and (xs,sin(2ϕs))(x_s, \sin{(2\phi_s)}) plots we still find much larger regions in the four down quark model than in the SM, reaching down to η0\eta \approx 0, 0sin(γ)10 \leq \sin{(\gamma)} \leq 1, .75sin(2α)0.15-.75 \leq \sin{(2\alpha)} \leq 0.15, and sin(2ϕs)\sin{(2\phi_s)} down to zero, all at 1σ\sigma. We elucidate the nature of the cancellation in an order λ5\lambda^5 four down quark mixing matrix element which satisfies the experiments and reduces the number of independent angles and phases. We also evaluate tests of unitarity for the 3×33\times3 CKM submatrix.Comment: 14 pages, 16 figures, REVTeX

    Constraints on the Mass and Mixing of the 4th Generation Quark From Direct CP Violationϵ/ϵ\epsilon^{\prime}/\epsilon and Rare K Decays

    Full text link
    We investigate the ϵ/ϵ\epsilon^{\prime} /\epsilon for KππK\to \pi\pi in a sequential fourth generation model. By giving the basic formulae for ϵ/ϵ\epsilon^{\prime}/\epsilon in this model, we analyze the numerical results which are dependent of mtm_{t^{\prime}} and imaginary part of the fourth CKM factor, ImVtsVtd{Im}V^{*}_{t^{'}s}V_{t^{'}d} (or VtsVtdV^{*}_{t^{'}s}V_{t^{'}d} and the fourth generation CKM matrix phase θ\theta). We find that, unlike the SM, when taking the central values of all parameters for ϵ/ϵ\epsilon^{\prime}/\epsilon, the values of ϵ/ϵ\epsilon^{\prime}/ \epsilon can easily fit to the current experimental data for all values of hadronic matrix elements estimated from various approaches. Also, we show that the experimental values of ϵ/ϵ\epsilon^{\prime}/\epsilon and rare K decays can provide a strong constraint on both mass and mixing of the fourth generation quark. When taking the values of hadronic matrix elements from the lattice or 1/N expansion calculations, a large region of the up-type quark mass mtm_{t^{\prime}} is excluded.Comment: 18 pages, 4 eps figure

    Search for the Lepton-Number-Violating Decay Ξpμμ\Xi^- \to p \mu^- \mu^-

    Full text link
    A sensitive search for the lepton-number-violating decay Ξpμμ\Xi^-\to p \mu^-\mu^- has been performed using a sample of 109\sim10^9 Ξ\Xi^- hyperons produced in 800 GeV/cc pp-Cu collisions. We obtain B(Ξpμμ)<4.0×108\mathcal{B}(\Xi^-\to p \mu^-\mu^-)< 4.0\times 10^{-8} at 90% confidence, improving on the best previous limit by four orders of magnitude.Comment: 9 pages, 5 figures, to be published in Phys. Rev. Let

    Beautiful Mirrors at the LHC

    Get PDF
    We explore the "Beautiful Mirrors" model, which aims to explain the measured value of AFBbA^b_{FB}, discrepant at the 2.9σ2.9\sigma level. This scenario introduces vector-like quarks which mix with the bottom, subtly affecting its coupling to the ZZ. The spectrum of the new particles consists of two bottom-like quarks and a charge -4/3 quark, all of which have electroweak interactions with the third generation. We explore the phenomenology and discovery reach for these new particles at the LHC, exploring single mirror quark production modes whose rates are proportional to the same mixing parameters which resolve the AFBbA_{FB}^b anomaly. We find that for mirror quark masses 500GeV,a14TeVLHCwith300fb1\lesssim 500 GeV, a 14 TeV LHC with 300 {\rm fb}^{-1} is required to reasonably establish the scenario and extract the relevant mixing parameters.Comment: version to be published in JHE

    Observation of Parity Violation in the Omega-minus -> Lambda + K-minus Decay

    Get PDF
    The alpha decay parameter in the process Omega-minus -> Lambda + K-minus has been measured from a sample of 4.50 million unpolarized Omega-minus decays recorded by the HyperCP (E871) experiment at Fermilab and found to be [1.78 +/- 0.19(stat) +/- 0.16(syst)]{\times}10^{-2}. This is the first unambiguous evidence for a nonzero alpha decay parameter, and hence parity violation, in the Omega-minus -> Lambda + K-minus decay.Comment: 10 pages, 7 figure

    Measurement of the Alpha Asymmetry Parameter for the Omega- to Lambda K- Decay

    Full text link
    We have measured the alpha parameter of the Omega- to Lambda K- decay using data collected with the HyperCP spectrometer during the 1997 fixed-target run at Fermilab. Analyzing a sample of 0.96 million Omega- to Lambda K^-, Lambda to p pi- decays, we obtain alpha_Omega*alpha_Lambda = [1.33+/-0.33(stat)+/-0.52(syst)] x 10^{-2}. With the accepted value of alpha_Lambda, alpha_Omega is found to be [2.07+/-0.51(stat)+/-0.81(syst)] x 10^{-2}.Comment: 5 pages, 4 figures, to be appeared as a Rapid Communication in Phys. Rev.
    corecore