10 research outputs found
Geometric effects on critical behaviours of the Ising model
We investigate the critical behaviour of the two-dimensional Ising model
defined on a curved surface with a constant negative curvature. Finite-size
scaling analysis reveals that the critical exponents for the zero-field
magnetic susceptibility and the correlation length deviate from those for the
Ising lattice model on a flat plane. Furthermore, when reducing the effects of
boundary spins, the values of the critical exponents tend to those derived from
the mean field theory. These findings evidence that the underlying geometric
character is responsible for the critical properties the Ising model when the
lattice is embedded on negatively curved surfaces.Comment: 16 pages, 6 figures, to appear in J. Phys. A: Math. Ge
Novel scaling behavior of the Ising model on curved surfaces
We demonstrate the nontrivial scaling behavior of Ising models defined on (i)
a donut-shaped surface and (ii) a curved surface with a constant negative
curvature. By performing Monte Carlo simulations, we find that the former model
has two distinct critical temperatures at which both the specific heat
and magnetic susceptibility show sharp peaks.The critical exponents
associated with the two critical temperatures are evaluated by the finite-size
scaling analysis; the result reveals that the values of these exponents vary
depending on the temperature range under consideration. In the case of the
latter model, it is found that static and dynamic critical exponents deviate
from those of the Ising model on a flat plane; this is a direct consequence of
the constant negative curvature of the underlying surface.Comment: 11 pages 5 figure
Phase Transition of the Ising model on a Hyperbolic Lattice
The matrix product structure is considered on a regular lattice in the
hyperbolic plane. The phase transition of the Ising model is observed on the
hyperbolic lattice by means of the corner-transfer-matrix
renormalization group (CTMRG) method. Calculated correlation length is always
finite even at the transition temperature, where mean-field like behavior is
observed. The entanglement entropy is also always finite.Comment: 4 pages, 3 figure
Periodic boundary conditions on the pseudosphere
We provide a framework to build periodic boundary conditions on the
pseudosphere (or hyperbolic plane), the infinite two-dimensional Riemannian
space of constant negative curvature. Starting from the common case of periodic
boundary conditions in the Euclidean plane, we introduce all the needed
mathematical notions and sketch a classification of periodic boundary
conditions on the hyperbolic plane. We stress the possible applications in
statistical mechanics for studying the bulk behavior of physical systems and we
illustrate how to implement such periodic boundary conditions in two examples,
the dynamics of particles on the pseudosphere and the study of classical spins
on hyperbolic lattices.Comment: 30 pages, minor corrections, accepted to J. Phys.
Novel scaling behavior of the Ising model on curved surfaces
We demonstrate the nontrivial scaling behavior of Ising models defined on (i) a donut-shaped surface and (ii) a curved surface with a constant negative curvature. By performing Monte Carlo simulations, we find that the former model has two distinct critical temperatures at which both the specific heat C(T) and magnetic susceptibility chi(T) show sharp peaks. The critical exponents associated with the two critical temperatures are evaluated by the finite-size scaling analysis; the result reveals that the values of these exponents vary depending on the temperature range under consideration. In the case of the latter model, it is found that static and dynamic critical exponents deviate from those of the Ising model on a flat plane; this is a direct consequence of the constant negative curvature of the underlying surface