12 research outputs found
The association between subgroups of MRI findings identified with latent class analysis and low back pain in 40-year old Danes
Background: Research into the clinical importance of spinal MRI findings in patients with low back pain (LBP) has primarily focused on single imaging findings, such as Modic changes or disc degeneration, and found only weak associations with the presence of pain. However, numerous MRI findings almost always co-exist in the lumbar spine and are often present at more than one lumbar level. It is possible that multiple MRI findings are more strongly associated with LBP than single MRI findings. Latent Class Analysis is a statistical method that has recently been tested and found useful for identifying latent classes (subgroups) of MRI findings within multivariable datasets. The purpose of this study was to investigate the association between subgroups of MRI findings and the presence of LBP in people from the general population. Methods: To identify subgroups of lumbar MRI findings with potential clinical relevance, Latent Class Analysis was initially performed on a clinical dataset of 631 patients seeking care for LBP. Subsequently, 412 participants in a general population cohort (the ‘Backs on Funen’ project) were statistically allocated to those existing subgroups by Latent Class Analysis, matching their MRI findings at a segmental level. The subgroups containing MRI findings from the general population were then organised into hypothetical pathways of degeneration and the association between subgroups in the pathways and the presence of LBP was tested using exact logistic regression. Results: Six subgroups were identified in the clinical dataset and the data from the general population cohort fitted the subgroups well, with a median posterior probability of 93%–100%. These six subgroups described two pathways of increasing degeneration on upper (L1-L3) and lower (L4-L5) lumbar levels. An association with LBP was found for the subgroups describing severe and multiple degenerative MRI findings at the lower lumbar levels but none of the other subgroups were associated with LBP
Migration en chambre antérieure de l’implant intravitréen de dexaméthasone Ozurdex® chez le pseudophake : à propos de trois cas
Introduction. - Intravitreal implantation of Ozurdex (R) (Allergan Inc., Irvine, CA, USA) is being used widely for the treatment of macular edema secondary to retinal vein occlusion and in the setting of non-infectious posterior uveitis. We describe a complication little reported in the literature until now: migration of the dexamethasone implant into the anterior chamber. Patients and methods. - We report three cases of migration in two pseudophakic patients with iris claw lenses (on the anterior and posterior aspects of the iris) and in one pseudophakic patient with a posterior chamber IOL and zonular rupture. Discussion. - The risk of anterior chamber migration of the Ozurdex (R) implant is increased in cases of prior vitrectomy (three cases), prone positioning and dilation of the pupil (mydriasis). Clinical tolerability of the implant in the anterior chamber is poor in all cases, with diffuse corneal edema. Endothelial cell loss occurs, as demonstrated by specular microscopy performed in two of our patients. Removal or repositioning of the Ozurdex (R) implant into the posterior segment must be performed without delay because of the risk of endothelial toxicity. Conclusion. - Patients without perfect zonular/posterior capsular integrity present a high risk of anterior chamber migration of the Ozurdex (R) implant. In such cases, anti-VEGF therapies should be discussed as an alternative. (C) 2012 Elsevier Masson SAS. All rights reserved
A novel urinary biomarker predicts 1-year mortality after discharge from intensive care
Rationale The urinary proteome reflects molecular drivers of disease. Objectives To construct a urinary proteomic biomarker predicting 1-year post-ICU mortality. Methods In 1243 patients, the urinary proteome was measured on ICU admission, using capillary electrophoresis coupled with mass spectrometry along with clinical variables, circulating biomarkers (BNP, hsTnT, active ADM, and NGAL), and urinary albumin. Methods included support vector modeling to construct the classifier, Cox regression, the integrated discrimination (IDI), and net reclassification (NRI) improvement, and area under the curve (AUC) to assess predictive accuracy, and Proteasix and protein-proteome interactome analyses. Measurements and main results In the discovery (deaths/survivors, 70/299) and test (175/699) datasets, the new classifier ACM128, mainly consisting of collagen fragments, yielding AUCs of 0.755 (95% CI, 0.708-0.798) and 0.688 (0.656-0.719), respectively. While accounting for study site and clinical risk factors, hazard ratios in 1243 patients were 2.41 (2.00-2.91) for ACM128 (+ 1 SD), 1.24 (1.16-1.32) for the Charlson Comorbidity Index (+ 1 point), and >= 1.19 (P = + 0.50), NRI (>= + 53.7), and AUC (>= + 0.037) over and beyond clinical risk indicators and other biomarkers. Interactome mapping, using parental proteins derived from sequenced peptides included in ACM128 and in silico predicted proteases, including/excluding urinary collagen fragments (63/35 peptides), revealed as top molecular pathways protein digestion and absorption, lysosomal activity, and apoptosis. Conclusions The urinary proteomic classifier ACM128 predicts the 1-year post-ICU mortality over and beyond clinical risk factors and other biomarkers and revealed molecular pathways potentially contributing to a fatal outcome
A novel urinary biomarker predicts 1-year mortality after discharge from intensive care
Rationale The urinary proteome reflects molecular drivers of disease. Objectives To construct a urinary proteomic biomarker predicting 1-year post-ICU mortality. Methods In 1243 patients, the urinary proteome was measured on ICU admission, using capillary electrophoresis coupled with mass spectrometry along with clinical variables, circulating biomarkers (BNP, hsTnT, active ADM, and NGAL), and urinary albumin. Methods included support vector modeling to construct the classifier, Cox regression, the integrated discrimination (IDI), and net reclassification (NRI) improvement, and area under the curve (AUC) to assess predictive accuracy, and Proteasix and protein-proteome interactome analyses. Measurements and main results In the discovery (deaths/survivors, 70/299) and test (175/699) datasets, the new classifier ACM128, mainly consisting of collagen fragments, yielding AUCs of 0.755 (95% CI, 0.708-0.798) and 0.688 (0.656-0.719), respectively. While accounting for study site and clinical risk factors, hazard ratios in 1243 patients were 2.41 (2.00-2.91) for ACM128 (+ 1 SD), 1.24 (1.16-1.32) for the Charlson Comorbidity Index (+ 1 point), and >= 1.19 (P = + 0.50), NRI (>= + 53.7), and AUC (>= + 0.037) over and beyond clinical risk indicators and other biomarkers. Interactome mapping, using parental proteins derived from sequenced peptides included in ACM128 and in silico predicted proteases, including/excluding urinary collagen fragments (63/35 peptides), revealed as top molecular pathways protein digestion and absorption, lysosomal activity, and apoptosis. Conclusions The urinary proteomic classifier ACM128 predicts the 1-year post-ICU mortality over and beyond clinical risk factors and other biomarkers and revealed molecular pathways potentially contributing to a fatal outcome