84 research outputs found

    Global risk from the atmospheric dispersion of radionuclides by nuclear power plant accidents in the coming decades

    Get PDF
    We estimate the global risk from the release and atmospheric dispersion of radionuclides from nuclear power plant accidents using the EMAC atmospheric chemistry–general circulation model. We included all nuclear reactors that are currently operational, under construction and planned or proposed. We implemented constant continuous emissions from each location in the model and simulated atmospheric transport and removal via dry and wet deposition processes over 20 years (2010–2030), driven by boundary conditions based on the IPCC A2 future emissions scenario. We present global overall and seasonal risk maps for potential surface layer concentrations and ground deposition of radionuclides, and estimate potential doses to humans from inhalation and ground-deposition exposures to radionuclides. We find that the risk of harmful doses due to inhalation is typically highest in the Northern Hemisphere during boreal winter, due to relatively shallow boundary layer development and limited mixing. Based on the continued operation of the current nuclear power plants, we calculate that the risk of radioactive contamination to the citizens of the USA will remain to be highest worldwide, followed by India and France. By including stations under construction and those that are planned and proposed, our results suggest that the risk will become highest in China, followed by India and the USA

    Large-Scale Modelling of the Environmentally-Driven Population Dynamics of Temperate Aedes albopictus (Skuse)

    Get PDF
    The Asian tiger mosquito, Aedes albopictus, is a highly invasive vector species. It is a proven vector of dengue and chikungunya viruses, with the potential to host a further 24 arboviruses. It has recently expanded its geographical range, threatening many countries in the Middle East, Mediterranean, Europe and North America. Here, we investigate the theoretical limitations of its range expansion by developing an environmentally-driven mathematical model of its population dynamics. We focus on the temperate strain of Ae. albopictus and compile a comprehensive literature-based database of physiological parameters. As a novel approach, we link its population dynamics to globally-available environmental datasets by performing inference on all parameters. We adopt a Bayesian approach using experimental data as prior knowledge and the surveillance dataset of Emilia-Romagna, Italy, as evidence. The model accounts for temperature, precipitation, human population density and photoperiod as the main environmental drivers, and, in addition, incorporates the mechanism of diapause and a simple breeding site model. The model demonstrates high predictive skill over the reference region and beyond, confirming most of the current reports of vector presence in Europe. One of the main hypotheses derived from the model is the survival of Ae. albopictus populations through harsh winter conditions. The model, constrained by the environmental datasets, requires that either diapausing eggs or adult vectors have increased cold resistance. The model also suggests that temperature and photoperiod control diapause initiation and termination differentially. We demonstrate that it is possible to account for unobserved properties and constraints, such as differences between laboratory and field conditions, to derive reliable inferences on the environmental dependence of Ae. albopictus populations

    The electromagnetic form factors of the Omega in lattice QCD

    Get PDF
    We present results on the Omega baryon electromagnetic form factors using Nf=2+1N_f=2+1 domain-wall fermion configurations for three pion masses in the range of about 350 to 300 MeV. We compare results obtained using domain wall fermions with those of a mixed-action (hybrid) approach, which combine domain wall valence quarks on staggered sea quarks, for a pion mass of about 350 MeV. We pay particular attention in the evaluation of the subdominant electric quadrupole form factor to sufficient accuracy to exclude a zero value, by constructing a sequential source that isolates it from the dominant form factors. The Ω−\Omega^- magnetic moment, μΩ−\mu_{\Omega^{-}}, the electric charge and magnetic radius, ⟨rE0/M12⟩\langle r^{2}_{E0/M1} \rangle, are extracted for these pion masses. The electric quadrupole moment is determined for the first time using dynamical quarks.Comment: 13 pages, 10 Figure

    The Critical Hopping Parameter in O(a) improved Lattice QCD

    Full text link
    We calculate the critical value of the hopping parameter, κc\kappa_c, in O(a) improved Lattice QCD, to two loops in perturbation theory. We employ the Sheikholeslami-Wohlert (clover) improved action for Wilson fermions. The quantity which we study is a typical case of a vacuum expectation value resulting in an additive renormalization; as such, it is characterized by a power (linear) divergence in the lattice spacing, and its calculation lies at the limits of applicability of perturbation theory. The dependence of our results on the number of colors NN, the number of fermionic flavors NfN_f, and the clover parameter cSWc_{SW}, is shown explicitly. We compare our results to non perturbative evaluations of κc\kappa_c coming from Monte Carlo simulations.Comment: 11 pages, 2 EPS figures. The only change with respect to the original version is inclusion of the standard formulae for the gauge fixing and ghost parts of the action. Accepted for publication in Physical Review

    Accelerating simulations using REDCHEM_v0.0 for atmospheric chemistry mechanism reduction

    Get PDF
    Chemical mechanism reduction is common practice in combustion research for accelerating numerical simulations; however, there have been limited applications of this practice in atmospheric chemistry. In this study, we employ a powerful reduction method in order to produce a skeletal mechanism of an atmospheric chemistry code that is commonly used in air quality and climate modelling. The skeletal mechanism is developed using input data from a model scenario. Its performance is then evaluated both a priori against the model scenario results and a posteriori by implementing the skeletal mechanism in a chemistry transport model, namely the Weather Research and Forecasting code with Chemistry. Preliminary results, indicate a substantial increase in computational speed-up for both cases, with a minimal loss of accuracy with regards to the simulated spatio-temporal mixing ratio of the target species, which was selected to be ozone.</p

    Nucleon to Delta transition form factors with NF=2+1N_F=2+1 domain wall fermions

    Get PDF
    We calculate the electromagnetic, axial and pseudo-scalar form factors of the Nucleon to Δ(1232)\Delta(1232) transition using two dynamical light degenerate quarks and a dynamical strange quark simulated with the domain wall fermion action. Results are obtained at lattice spacings a=0.114a = 0.114 fm and a=0.084a=0.084 fm, with corresponding pion masses of 330330 MeV and 297297 MeV, respectively. High statistics measurements are achieved by utilizing the coherent sink technique. The dominant electromagnetic dipole form factor, the axial form factors and the pseudo-scalar coupling are extracted to a good accuracy. This allows the investigation of the non-diagonal Goldberger-Treiman relation. Particular emphasis is given on the extraction of the sub-dominant electromagnetic quadrupole form factors and their ratio to the dominant dipole form factor, REMR_{EM} and RSMR_{SM}, measured in experiment.Comment: 31 pages, 10 figure

    Downscaling Climate Change Impacts, Socio-Economic Implications and Alternative Adaptation Pathways for Islands and Outermost Regions

    Get PDF
    This book provides a comprehensive overview of the future scenarios of climate change and management concerns associated with climate change impacts on the blue economy of European islands and outermost regions. The publication collects major findings of the SOCLIMPACT project’s research outcomes, aiming to raise social awareness among policy-makers and industry about climate change consequences at local level, and provide knowledge-based information to support policy design, from local to national level. This comprehensive book will also assist students, scholars and practitioners to understand, conceptualize and effectively and responsibly manage climate change information and applied research. This book provides invaluable material for Blue Growth Management, theory and application, at all levels. This first edition includes up-to-date data, statistics, references, case material and figures of the 12 islands case studies. ¨Downscaling climate change impacts, socio-economic implications and alternative adaptation pathways for Islands and Outermost Regions¨ is a must-read book, given the accessible style and breadth and depth with which the topic is dealt. The book is an up-to-date synthesis of key knowledge on this area, written by a multidisciplinary group of experts on climate and economic modelling, and policy design
    • …
    corecore