1,790 research outputs found

    System Level Evaluation of Innovative Coded MIMO-OFDM Systems for Broadcasting Digital TV

    Get PDF
    Single-frequency networks (SFNs) for broadcasting digital TV is a topic of theoretical and practical interest for future broadcasting systems. Although progress has been made in the characterization of its description, there are still considerable gaps in its deployment with MIMO technique. The contribution of this paper is multifold. First, we investigate the possibility of applying a space-time (ST) encoder between the antennas of two sites in SFN. Then, we introduce a 3D space-time-space block code for future terrestrial digital TV in SFN architecture. The proposed 3D code is based on a double-layer structure designed for intercell and intracell space time-coded transmissions. Eventually, we propose to adapt a technique called effective exponential signal-to-noise ratio (SNR) mapping (EESM) to predict the bit error rate (BER) at the output of the channel decoder in the MIMO systems. The EESM technique as well as the simulations results will be used to doubly check the efficiency of our 3D code. This efficiency is obtained for equal and unequal received powers whatever is the location of the receiver by adequately combining ST codes. The 3D code is then a very promising candidate for SFN architecture with MIMO transmission

    Susceptibility Amplitude Ratios Near a Lifshitz Point

    Full text link
    The susceptibility amplitude ratio in the neighborhood of a uniaxial Lifshitz point is calculated at one-loop level using field-theoretic and ϵL\epsilon_{L}-expansion methods. We use the Schwinger parametrization of the propagator in order to split the quadratic and quartic part of the momenta, as well as a new special symmetry point suitable for renormalization purposes. For a cubic lattice (d = 3), we find the result C+C−=3.85\frac{C_{+}}{C_{-}} = 3.85.Comment: 7 pages, late

    Single cell mechanics: stress stiffening and kinematic hardening

    Full text link
    Cell mechanical properties are fundamental to the organism but remain poorly understood. We report a comprehensive phenomenological framework for the nonlinear rheology of single fibroblast cells: a superposition of elastic stiffening and viscoplastic kinematic hardening. Our results show, that in spite of cell complexity its mechanical properties can be cast into simple, well-defined rules, which provide mechanical cell strength and robustness via control of crosslink slippage.Comment: 4 pages, 6 figure

    A comparative study for estimating the parameters of the second order moving average process

    Get PDF
    EnMoving Average process is a representation of a time series written as a finite linear combination of uncorrelated random variables. Our main interest is to compare a classical estimation method; namely Exact Maximum Likelihood Estimation (EMLE) with the Generalized Maximum Entropy (GME) approach for estimating the parameters of the second order moving average processes. In this paper, in applying EMLE we have to find the exact likelihood function through deriving the probability density function of the series. Differentiating the function with respect to the parameters, we can obtain the exact maximum likelihood estimates. On the other hand, the idea of GME is to write the unknown parameters and error terms as the expected value of some proper probability distributions defined over some supports. We carry a simulation study to compare between the presented estimation techniques

    Closed-form sums for some perturbation series involving associated Laguerre polynomials

    Full text link
    Infinite series sum_{n=1}^infty {(alpha/2)_n / (n n!)}_1F_1(-n, gamma, x^2), where_1F_1(-n, gamma, x^2)={n!_(gamma)_n}L_n^(gamma-1)(x^2), appear in the first-order perturbation correction for the wavefunction of the generalized spiked harmonic oscillator Hamiltonian H = -d^2/dx^2 + B x^2 + A/x^2 + lambda/x^alpha 0 0, A >= 0. It is proved that the series is convergent for all x > 0 and 2 gamma > alpha, where gamma = 1 + (1/2)sqrt(1+4A). Closed-form sums are presented for these series for the cases alpha = 2, 4, and 6. A general formula for finding the sum for alpha/2 = 2 + m, m = 0,1,2, ..., in terms of associated Laguerre polynomials, is also provided.Comment: 16 page

    Tracking transplanted bone marrow stem cells and their effects in the rat MCAO stroke model.

    Get PDF
    In this study, rat bone marrow stromal stem cells (BMSCs) were tracked after IV administration to rats with experimental stroke caused by middle cerebral artery occlusion (MCAO). In addition, the effects of BMSC treatment on blood cell composition, brain glia and sensorimotor behavior was studied and compared to that which occurred spontaneously during the normal recovery process after stroke. We found that the vast majority of radiolabeled or fluorescently labeled BMSCs traveled to and remained in peripheral organs (lungs, spleen, liver) 3 days after IV injection in the MCAO rat. Once in the circulation, BMSCs also produced rapid alterations in host blood cell composition, increasing both neutrophil and total white blood cell count by 6 hours post-injection. In contrast, few injected BMSCs traveled to the brain and almost none endured there long term. Nonetheless, BMSC treatment produced dramatic changes in the number and activation of brain astroglia and microglia, particularly in the region of the infarct. These cellular changes were correlated with a marked improvement in performance on tests of sensory and motor function as compared to the partial recovery of function seen in PBS-injected control rats. We conclude that the notable recovery in function observed after systemic administration of BMSCs to MCAO rats is likely due to the cellular changes in blood and/or brain cell number, activation state and their cytokine/growth factor products

    Effective Mass Dirac-Morse Problem with any kappa-value

    Full text link
    The Dirac-Morse problem are investigated within the framework of an approximation to the term proportional to 1/r21/r^2 in the view of the position-dependent mass formalism. The energy eigenvalues and corresponding wave functions are obtained by using the parametric generalization of the Nikiforov-Uvarov method for any κ\kappa-value. It is also studied the approximate energy eigenvalues, and corresponding wave functions in the case of the constant-mass for pseudospin, and spin cases, respectively.Comment: 12 page

    Optical evidence of surface state suppression in Bi based topological insulators

    Full text link
    A key challenge in condensed matter research is the optimization of topological insulator (TI) compounds for the study and future application of their unique surface states. Truly insulating bulk states would allow the exploitation of predicted surface state properties, such as protection from backscattering, dissipationless spin-polarized currents, and the emergence of novel particles. Towards this end, major progress was recently made with the introduction of highly resistive Bi2_2Te2_2Se, in which surface state conductance and quantum oscillations are observed at low temperatures. Nevertheless, an unresolved and pivotal question remains: while room temperature ARPES studies reveal clear evidence of TI surface states, their observation in transport experiments is limited to low temperatures. A better understanding of this surface state suppression at elevated temperatures is of fundamental interest, and crucial for pushing the boundary of device applications towards room-temperature operation. In this work, we simultaneously measure TI bulk and surface states via temperature dependent optical spectroscopy, in conjunction with transport and ARPES measurements. We find evidence of coherent surface state transport at low temperatures, and propose that phonon mediated coupling between bulk and surface states suppresses surface conductance as temperature rises.Comment: 13 pages, 10 figure
    • …
    corecore