418 research outputs found

    An Off-Axis Relativistic Jet Model for the Type Ic supernova SN 2007gr

    Full text link
    We propose an off-axis relativistic jet model for the Type Ic supernova SN 2007gr. Most of the energy (∌2×1051\sim2\times10^{51} erg) in the explosion is contained in non-relativistic ejecta which produces the supernova. The optical emission is coming from the decay process of 56Ni\rm ^{56}Ni synthesized in the bulk SN ejecta. Only very little energy (∌1048\sim10^{48} erg) is contained in the relativistic jet with initial velocity about 0.94 times the speed of light. The radio and X-ray emission comes from this relativistic jet. With some typical parameters of a Wolf-Rayet star (progenitor of Type Ic SN), i.e., the mass loss rate M˙=1.0×10−5M⊙yr−1\dot{M}=1.0 \times10^{-5} M_{\odot} \rm yr^{-1} and the wind velocity vw=1.5×103kms−1v_{\rm w}=1.5\times10^{3} \rm km s^{-1} together with an observing angle of Ξobs=63.3∘\theta_{\rm obs} = 63.3^{\circ}, we can obtain the multiband light curves that fit the observations well. All the observed data are consistent with our model. Thus we conclude that SN 2007gr contains a weak relativistic jet and we are observing the jet from off-axis.Comment: 22 pages, 4 figures, accepted for publication in Ap

    Failed Gamma-Ray Bursts: Thermal UV/Soft X-ray Emission Accompanied by Peculiar Afterglows

    Full text link
    We show that the photospheres of "failed" Gamma-Ray Bursts (GRBs), whose bulk Lorentz factors are much lower than 100, can be outside of internal shocks. The resulting radiation from the photospheres is thermal and bright in UV/Soft X-ray band. The photospheric emission lasts for about one thousand seconds with luminosity about several times 10^46 erg/s. These events can be observed by current and future satellites. It is also shown that the afterglows of failed GRBs are peculiar at the early stage, which makes it possible to distinguish failed GRBs from ordinary GRBs and beaming-induced orphan afterglows.Comment: 19 pages, 7 figures, accepted for publication in the Astrophysical Journa

    High Energy Neutrino Flashes from Far-Ultraviolet and X-ray Flares in Gamma-Ray Bursts

    Get PDF
    The recent observations of bright optical and x-ray flares by the Swift satellite suggest these are produced by the late activities of the central engine. We study the neutrino emission from far-ultraviolet and x-ray flares under the late internal shock model. We show that the efficiency of pion production in the highest energy is comparable to or higher than the unity, and the contribution from such neutrino flashes to a diffuse very high energy neutrino background can be larger than that of prompt bursts if the total baryonic energy input into flares is comparable to the radiated energy of prompt bursts. These signals may be detected by IceCube and are very important because they have possibilities to probe the nature of flares (the baryon loading, the photon field, the magnetic field and so on).Comment: 4 pages, 3 figures, version published in PR

    A New Method for Calculating Arrival Distribution of Ultra-High Energy Cosmic Rays above 10^19 eV with Modifications by the Galactic Magnetic Field

    Full text link
    We present a new method for calculating arrival distribution of UHECRs including modifications by the galactic magnetic field. We perform numerical simulations of UHE anti-protons, which are injected isotropically at the earth, in the Galaxy and record the directions of velocities at the earth and outside the Galaxy for all of the trajectories. We then select some of them so that the resultant mapping of the velocity directions outside the Galaxy of the selected trajectories corresponds to a given source location scenario, applying Liouville's theorem. We also consider energy loss processes of UHE protons in the intergalactic space. Applying this method to our source location scenario which is adopted in our recent study and can explain the AGASA observation above 4 \times 10^{19} eV, we calculate the arrival distribution of UHECRs including lower energy (E>10^19 eV) ones. We find that our source model can reproduce the large-scale isotropy and the small-scale anisotropy on UHECR arrival distribution above 10^19 eV observed by the AGASA. We also demonstrate the UHECR arrival distribution above 10^19 eV with the event number expected by future experiments in the next few years. The interesting feature of the resultant arrival distribution is the arrangement of the clustered events in the order of their energies, reflecting the directions of the galactic magnetic field. This is also pointed out by Alvarez-Muniz et al.(2002). This feature will allow us to obtain some kind of information about the composition of UHECRs and the magnetic field with increasing amount of data.Comment: 10 pages, 8 figures, to appear in the Astrophysical Journa

    Magnetohydrodynamic Effects in Propagating Relativistic Ejecta: Reverse Shock and Magnetic Acceleration

    Get PDF
    We solve the Riemann problem for the deceleration of arbitrarily magnetized relativistic ejecta injected into a static unmagnetized medium. We find that for the same initial Lorentz factor, the reverse shock becomes progressively weaker with increasing magnetization s (the Poynting-to-kinetic energy flux ratio), and the shock becomes a rarefaction wave when s exceeds a critical value, sc, defined by the balance between the magnetic pressure in the ejecta and the thermal pressure in the forward shock. In the rarefaction wave regime, we find that the rarefied region is accelerated to a Lorentz factor that is significantly larger than the initial value. This acceleration mechanism is due to the strong magnetic pressure in the ejecta

    Magnetohydrodynamic Effects in Relativistic Ejecta

    No full text

    Radiocesium concentrations in wild mushrooms after the accident at the Fukushima Daiichi Nuclear Power Station: Follow-up study in Kawauchi village

    Get PDF
    Since the accident at the Chernobyl Nuclear Power Plant, it has become well known that radiocesium tends to concentrate in wild mushrooms. During the recovery process after the accident at the Fukushima Daiichi Nuclear Power Station (FDNPS), it is important to perform follow-up measurements of the activity concentrations of radiocesium in mushrooms. We evaluated the activity concentrations of the detected artificial radionuclides (radiocesium) in wild mushrooms collected from Kawauchi village, which is within 30?km of the FDNPS, in 2015, four years after the accident. We found that the radiocesium was determined in 147 of 159 mushroom samples (92.4%). Based on the average mushroom consumption of Japanese citizens (6.28?kg per year), we calculated committed effective doses ranging from <0.001 to 0.6?mSv. Although committed effective doses are relatively limited, even if residents have consumed mushrooms several times, continuous monitoring of the radiocesium in mushrooms in Fukushima is needed for sustained recovery from the nuclear disaster

    Simulating Cherenkov Telescope Array observation of RX J1713.7-3946

    Full text link
    We perform simulations of Cherenkov Telescope Array (CTA) observations of a young supernova remnant RX J1713.7-3946. This target is not only one of the brightest sources ever discovered in very high-energy gamma rays but also well observed in other wavebands. In X-rays, the emission is dominated by synchrotron radiation, which links directly to the existence of high-energy electrons. Radio observations of CO and HI gas have revealed a highly inhomogeneous medium surrounding the SNR, such as clumpy molecular clouds. Therefore gamma rays from hadronic interactions are naturally expected. However, the spectrum in GeV energy range measured by Fermi/LAT indicates more typical of leptonic emission from accelerated electrons. Despite lots of multi-wavelength information, the competing interpretations have led to much uncertainty in the quest of unraveling the true origin of the gamma-ray emission from RX~J1713.7--3946. CTA will achieve highest performance ever in sensitivity, angular resolution, and energy resolution. We estimate CTA capability to examine the emission mechanisms of the gamma rays through simulated spatial distribution, spectra, and their time variation.Comment: 8 pages, 3 figures. In Proceedings of the 34th International Cosmic Ray Conference (ICRC2015), The Hague, The Netherlands. All CTA contributions at arXiv:1508.0589

    Arrival Distribution of Ultra-High Energy Cosmic Rays: Prospects for the Future

    Get PDF
    We predict the arrival distribution of UHECRs above 4×10194 \times 10^{19} eV with the event number expected by future experiments in the next few years. We perform event simulations with the source model which is adopted in our recent study and can explain the current AGASA observation. At first, we calculate the harmonic amplitude and the two point correlation function for the simulated event sets. We find that significant anisotropy on large angle scale will be observed when ∌103\sim 10^3 cosmic rays above 4×10194 \times 10^{19} eV are detected by future experiments. The statistics of the two point correlation function will also increase. The angle scale at which the events have strong correlation with each other corresponds to deflection angle of UHECR in propagating in the EGMF, which in turn can be determined by the future observations. We further investigate the relation between the number of events clustered at a direction and the distance of their sources. Despite the limited amount of data, we find that the C2 triplet events observed by the AGASA may originate from the source within 100 Mpc. Merger galaxy Arp 299 (NGC 3690 + IC 694) is the best candidate for their source. If data accumulate, the UHECR sources within ∌100\sim 100 Mpc can be identified from observed event clusterings significantly. This will provide some kinds of information about poorly known parameters which influence the propagation of UHECRs, such as extragalactic and galactic magnetic field, chemical composition of observed cosmic rays. Also, we will reveal their origin with our method to identify the sources of UHECR. Finally, we predict the arrival distribution of UHECRs above 102010^{20} eV, which is expected to be observed if the current HiRes spectrum is correct, and discuss their statistical features and implications.Comment: 11 pages, 9 figures. accepted version for publication in Ap

    Statistical Significance of Small Scale Anisotropy in Arrival Directions of Ultra-High Energy Cosmic Rays

    Full text link
    Recently, the High Resolution Fly's Eye (HiRes) experiment claims that there is no small scale anisotropy in the arrival distribution of ultra-high energy cosmic rays (UHECRs) above E>1019E>10^{19} eV contrary to the Akeno Giant Air Shower Array (AGASA) observation. In this paper, we discuss the statistical significance of this discrepancy between the two experiments. We calculate arrival distribution of UHECRs above 101910^{19} eV predicted by the source models constructed using the Optical Redshift Survey galaxy sample. We apply the new method developed by us for calculating arrival distribution in the presence of the galactic magnetic field. The great advantage of this method is that it enables us to calculate UHECR arrival distribution with lower energy (∌1019\sim 10^{19} eV) than previous studies within reasonable time by following only the trajectories of UHECRs actually reaching the earth. It has been realized that the small scale anisotropy observed by the AGASA can be explained with the source number density ∌10−5∌−6\sim 10^{-5 \sim -6} Mpc−3^{-3} assuming weak extragalactic magnetic field (B≀1B \le 1 nG). We find that the predicted small scale anisotropy for this source number density is also consistent with the current HiRes data. We thus conclude that the statement by the HiRes experiment that they do not find small scale anisotropy in UHECR arrival distribution is not statistically significant at present. We also show future prospect of determining the source number density with increasing amount of observed data.Comment: 8 pages, 7 figure
    • 

    corecore