8,440 research outputs found
Impact of Physical Stress on Salivary Buffering Capacity
Background: Saliva has many properties and the buffering capacity is important for the neutralization of oral fluids. It is unclear whether stressful conditions directly affect salivary buffering capacity, and we investigated the impact of physical stress on salivary buffering capacity. Methods: Twelve participants were subjected to the physical stress of jogging and running. The salivary buffering capacity and flow rate of the participants were measured before and after exposure to stressful conditions. Salivary α-amylase activity was measured as a quantitative index of stress. Results: No change in buffering capacity was detected among each time point during the whole course under physically stressful conditions. Next, we examined the change in buffering capacity after jogging compared to baseline. Six participants showed an increase in buffering capacity (Group A), while the other six participants showed a decrease or no change (Group B) after jogging. Group B showed a decrease in flow rate and increases in α-amylase activity and protein level after jogging, whereas Group A showed no changes in these properties. Conclusions: The results suggest that salivary buffering capacity changes following exposure to physically stressful conditions, and that the changes are dependent on the stress susceptibility of individuals
Changes in contractile proteins during differentiation of myeloid leukemia cells. II. Purification and characterization of actin
A myeloid leukemia cell line, M1, differentiates to macrophage and gains locomotive and phagocytic activity when incubated with conditioned medium (CM) from a fibroblast culture and bacterial endotoxin. To characterize the actin molecules before and after differentiation, the actin was purified through three sequential steps: DEAE-sephadex A- 50, polymerization/depolymerization, and sephadex G-150 chromatography. There were no essential differences between the inhibitory activity of actins from control M1 cells and CM-treated M1 cells on both DNase I and heavy meromyosin (HMMM) K(+)-EDTA-ATPase; the same dose response as with skeletal muscle actin took place. After the treatment with CM, however, the specific activity for the activation of HMMM Mg(2+)- ATPase by actin became two-fold that of untreated M1 actin, which was one third of the value for skeletal muscle actin. The V(max) for the control and the CM-treated M1 cell, as well as the skeletal muscle actins, proved to be the same. By contrast, the K(app) values for the control and CM-treated M1-cell actins were 3- and 1.5-fold the value for skeletal-muscle actin. This means that CM treatment of the M1 actin produced a twofold affinity for the Mg(2+)-ATPase of skeletal-muscle myosin. The critical concentrations for polymerization were compared under different salt concentrations and temperatures. Although no marked difference was found for the presence of 2 mM MgCl(2), 0.1 M KCl in place of MgCl(2) at 5 degrees C gave the following values: 0.1 mg/ml for skeletal-muscle actin, 0.7 mg/ml for control M1 actin, 0,5 mg/ml for CM- treated M1 actin, and 1.0 mg/ml for the D(-) subline that is insensitive to CM. Although the critical concentration of D(-) actin is extraordinarily high, this actin showed normal polymerization above the critical concentration. This together with the data presented in our previous paper, that the D(-) actin in the crude extract did not polymerize, suggests that an inhibitor for actin polymerization is present in the subline. The kinetics experiment at 0.1 M KCl and 25 degrees C revealed a slower polymerization of untreated M1- and D(-)-cell actins as compared with CM-treated M1 actin. This delayed polymerization was due to a delay during the nucleation stage, not during the elongation stage. By isoelectric focusing, the ratios of β- to γ-actin showed a marked difference depending on the states of cells: about 4.9 for control M1, 2.8 for CM-treated M1, and 7.6 for D(-)-subline actins. Tryptic peptide maps also revealed the presence of different peptides. Thus, the functional differences of actin before and after the differentiation was accompanied by some chemical changes in actin molecules
<Advanced Energy Utilization Division> Structural Energy Bioscience Research Section
3-1. Research Activities in 202
High-spectral resolution observations of the 3.29 micron emission feature: Comparison to QCC and PAHs
Two of the most promising explanations for the origin of the interstellar emission features observed at 3.29, 3.4, 6.2, 7.7, 8.6, and 11.3 microns are: quenched carbonaceous composite (QCC) and polycyclic aromatic hydrocarbons (PAHs). High resolution spectra are given of the 3.29 micron emission feature which were taken with the Cooled Grating Array Spectrometer at the NASA Infrared Telescope Facility and previously published. These spectra show that the peak wavelength of the 3.29 micron feature is located at 3.295 + or - 0.005 micron and that it is coincident with the peak absorbance of QCC. The peak wavelength of the 3.29 micron feature appears to be the same in all of the sources observed thus far. However, the width of the feature in HD 44179 and Elias 1 is only 0.023 micron, which is smaller than the 0.043 micron width in NGC 7027, IRAS 21282+5050, the Orion nebula, and BD+30 deg 3639. Spectra of NGC 7027, QCC, and PAHs is shown. QCC matches the 3.29 micron interstellar emission feature very closely in the wavelength of the peak, and it produces a single feature. On the other hand, PAHs rarely match the peak of the interstellar emission feature, and characteristically produce multiple features
- …