122 research outputs found

    Spin observables in the pnpΛpn \to p \Lambda reaction

    Full text link
    The T matrix of the LambdaN-> NN reaction, which is a strangeness changing weak process, is derived. The explicit formulas of the spin observables are given for s-wave p-Lambda final states which kinematically corresponds to inverse reaction of the weak nonmesonic decay of Lambda hypernuclei. One can study interferences between amplitudes of parity- conserving and violating, spin- singlet and triplet and isospin- singlet and triplet. Most of them are not available in the study of the nonmesonic decay. They clarify structure of the reaction and constrain strongly theoretical models for weak hyperon nucleon interaction.Comment: 7pages,ReVTeX,no figure

    Polarization-Correlated Photon Pairs from a Single Quantum Dot

    Full text link
    Polarization correlation in a linear basis, but not entanglement, is observed between the biexciton and single-exciton photons emitted by a single InAs quantum dot in a two-photon cascade. The results are well described quantitatively by a probabilistic model that includes two decay paths for a biexciton through a non-degenerate pair of one-exciton states, with the polarization of the emitted photons depending on the decay path. The results show that spin non-degeneracy due to quantum-dot asymmetry is a significant obstacle to the realization of an entangled-photon generation device.Comment: 4 pages, 4 figures, revised discussio

    Linear and Second-order Optical Response of the III-V Mono-layer Superlattices

    Full text link
    We report the first fully self-consistent calculations of the nonlinear optical properties of superlattices. The materials investigated are mono-layer superlattices with GaP grown on the the top of InP, AlP and GaAs (110) substrates. We use the full-potential linearized augmented plane wave method within the generalized gradient approximation to obtain the frequency dependent dielectric tensor and the second-harmonic-generation susceptibility. The effect of lattice relaxations on the linear optical properties are studied. Our calculations show that the major anisotropy in the optical properties is the result of strain in GaP. This anisotropy is maximum for the superlattice with maximum lattice mismatch between the constituent materials. In order to differentiate the superlattice features from the bulk-like transitions an improvement over the existing effective medium model is proposed. The superlattice features are found to be more pronounced for the second-order than the linear optical response indicating the need for full supercell calculations in determining the correct second-order response.Comment: 9 pages, 4 figures, submitted to Phy. Rev.

    Tight-binding study of the influence of the strain on the electronic properties of InAs/GaAs quantum dots

    Full text link
    We present an atomistic investigation of the influence of strain on the electronic properties of quantum dots (QD's) within the empirical sp3ss p^{3} s^{*} tight-binding (ETB) model with interactions up to 2nd nearest neighbors and spin-orbit coupling. Results for the model system of capped pyramid-shaped InAs QD's in GaAs, with supercells containing 10510^{5} atoms are presented and compared with previous empirical pseudopotential results. The good agreement shows that ETB is a reliable alternative for an atomistic treatment. The strain is incorporated through the atomistic valence force field model. The ETB treatment allows for the effects of bond length and bond angle deviations from the ideal InAs and GaAs zincblende structure to be selectively removed from the electronic-structure calculation, giving quantitative information on the importance of strain effects on the bound state energies and on the physical origin of the spatial elongation of the wave functions. Effects of dot-dot coupling have also been examined to determine the relative weight of both strain field and wave function overlap.Comment: 22 pages, 7 figures, submitted to Phys. Rev. B (in press) In the latest version, added Figs. 3 and 4, modified Fig. 5, Tables I and II,.and added new reference

    Final State Interactions in Hypernuclear Decay

    Get PDF
    We present an update of the One-Meson-Exchange (OME) results for the weak decay of s- and p-shell hypernuclei (Ref. Phys. Rev. C {\bf 56}, 339 (1997)), paying special attention to the role played by final state interactions between the emitted nucleons. The present study also corrects for a mistake in the inclusion of the KK and KK^* exchange mechanisms, which substantially increases the ratio of neutron-induced to proton-induced transitions, Γn/Γp\Gamma_n/\Gamma_p. With the most up-to-date model ingredients, we find that the OME approach is able to describe very satisfactorily most of the measured observables, including the ratio Γn/Γp\Gamma_n/\Gamma_p.Comment: 20 pages, 2 eps figure

    Transmission electron microscopy study of InxGa1-xAs quantum dots on a GaAs(001) substrate

    Get PDF
    A transmission electron microscopy (TEM) investigation of the morphology of InxGa1-xAs quantum dots grown on a GaAs(001) substrate has been carried out. The size and the shape of the quantum dots have been determined using bright-field images of cross-section TEM specimens and [001] on-zone bright-field images with imaging simulation from plan-view TEM specimens. The results suggest that the coherent quantum dots are lens shaped with base diameters of 25-40 nm and aspect ratios of height to diameter of 1:6-1:4. [S0163-1829(99)00920-0]

    Synthesis and optical properties of II-O-VI highly mismatched alloys

    Get PDF
    We have synthesized ternary and quaternary diluted II-VI oxides using the combination of O ion implantation and pulsed laser melting. CdO{sub x}Te{sub 1-x} thin films with x up to 0.015, and the energy gap reduced by 150 meV were formed by O{sup +}-implantation in CdTe followed by pulsed laser melting. Quaternary Cd{sub 0.6}Mn{sub 0.4}O{sub x}Te{sub 1-x} and Zn{sub 0.88}Mn{sub 0.12}O{sub x}Te{sub 1-x} with mole fraction of incorporated O as high as 0.03 were also formed. The enhanced O incorporation in Mn-containing alloys is believed to be due to the formation of relatively strong Mn-O bonds. Optical transitions associated with the lower (E{sub -}) and upper (E{sub +}) conduction subbands resulting from the anticrossing interaction between the localized O states and the extended conduction states of the host are clearly observed in these quaternary diluted II-VI oxides. These alloys fulfill the criteria for a multiband semiconductor that has been proposed as a material for making high efficiency, single-junction solar cells

    Optical anisotropy in vertically coupled quantum dots

    Get PDF
    We have studied the polarization of surface and edge-emitted photoluminescence (PL) from structures with vertically coupled In0.5Ga0.5As/GaAs quantum dots (QD’s) grown by molecular beam epitaxy. The PL polarization is found to be strongly dependent on the number of stacked layers. While single-layer and 3-layer structures show only a weak TE polarization, it is enhanced for 10-layer stacks. The 20-layer stacks additionally show a low-energy side-band of high TE polarization, which is attributed to laterally coupled QD’s forming after the growth of many layers by lateral coalescence of QD’s in the upper layers. While in the single, 3- and 10-layer stacks, both TE polarized PL components are stronger than the TM component, the [110] TE component is weaker than the TM component in the 20-layer stack. This polarization reversal is attributed to an increasing vertical coupling with increasing layer number due to increasing dot size
    corecore