253 research outputs found

    Data Vaults: a Database Welcome to Scientific File Repositories

    Get PDF
    Efficient management and exploration of high-volume scientific file repositories have become pivotal for advancement in science. We propose to demonstrate the Data Vault, an extension of the database system architecture that transparently opens scientific file repositories for efficient in-database processing and exploration. The Data Vault facilitates science data analysis using high-level declarative languages, such as the traditional SQL and the novel array-oriented SciQL. Data of interest are loaded from the attached repository in a just-in-time manner without need for up-front data ingestion. The demo is built around concrete implementations of the Data Vault for two scientific use cases: seismic time series and Earth observation images. The seismic Data Vault uses the queries submitted by the audience to illustrate the internals of Data Vault functioning by revealing the mechanisms of dynamic query plan generation and on-demand external data ingestion. The image Data Vault shows an application view from the perspective of data mining researchers

    Study of the radical products of the thermal decomposition of nitrocellulose

    Get PDF
    The thermal transformations of nitrocellulose are accompanied by the formation of RN02 - radicals and allyl radicals. A mechanism for the formation of these radicals was proposed. © 1990 Plenum Publishing Corporation

    Amino-nitrile cleavage in the electrochemical reduction of hydeazones of aromatic aldehydes

    Get PDF
    1. Factors which determine the possibility of amino-nitrile cleavage of hydrazones on electrochemical reduction (ECR) include the basicity of the anionic product formed in the course of the ECR and the mobility of the aldehyde hydrogen which depends on the character of the electron polarization of the hydrazone fragment and the polarity of the N-N bond. 2. The primary action in amino-nitrile cleavage under conditions of ECR is the deprotonation of the azomethine fragment in the unreduced molecule by electrochemically generated strong base (anion or dianion). © 1988 Plenum Publishing Corporation

    Quantum walks: a comprehensive review

    Full text link
    Quantum walks, the quantum mechanical counterpart of classical random walks, is an advanced tool for building quantum algorithms that has been recently shown to constitute a universal model of quantum computation. Quantum walks is now a solid field of research of quantum computation full of exciting open problems for physicists, computer scientists, mathematicians and engineers. In this paper we review theoretical advances on the foundations of both discrete- and continuous-time quantum walks, together with the role that randomness plays in quantum walks, the connections between the mathematical models of coined discrete quantum walks and continuous quantum walks, the quantumness of quantum walks, a summary of papers published on discrete quantum walks and entanglement as well as a succinct review of experimental proposals and realizations of discrete-time quantum walks. Furthermore, we have reviewed several algorithms based on both discrete- and continuous-time quantum walks as well as a most important result: the computational universality of both continuous- and discrete- time quantum walks.Comment: Paper accepted for publication in Quantum Information Processing Journa

    Measurement of Hadron Production in π\pi^--C Interactions at 158 and 350 GeV/c with NA61/SHINE at the CERN SPS

    Full text link
    We present a measurement of the momentum spectra of π±\pi^\pm, K±^\pm, p±^\pm, Λ\Lambda, Λˉ\bar{\Lambda} and KS0^{0}_{S} produced in interactions of negatively charged pions with carbon nuclei at beam momenta of 158 and 350 GeV/c. The total production cross sections are measured as well. The data were collected with the large-acceptance spectrometer of the fixed target experiment NA61/SHINE at the CERN SPS. The obtained double-differential pp-pTp_T spectra provide a unique reference data set with unprecedented precision and large phase-space coverage to tune models used for the simulation of particle production in extensive air showers in which pions are the most numerous projectiles

    Measurements of π±\pi^\pm, K±K^\pm, pp and pˉ\bar{p} spectra in 40^{40}Ar+45^{45}Sc collisions at 13AA to 150AA GeV/cc

    Full text link
    The NA61/SHINE experiment at the CERN Super Proton Synchrotron studies the onset of deconfinement in strongly interacting matter through a beam energy scan of particle production in collisions of nuclei of varied sizes. This paper presents results on inclusive double-differential spectra, transverse momentum and rapidity distributions and mean multiplicities of π±\pi^\pm, K±K^\pm, pp and pˉ\bar{p} produced in 40^{40}Ar+45^{45}Sc collisions at beam momenta of 13AA, 19AA, 30AA, 40AA, 75AA and 150AA GeV/cc. The analysis uses the 10% most central collisions, where the observed forward energy defines centrality. The energy dependence of the K±K^\pm/π±\pi^\pm ratios as well as of inverse slope parameters of the K±K^\pm transverse mass distributions are placed in between those found in inelastic pp+pp and central Pb+Pb collisions. The results obtained here establish a system-size dependence of hadron production properties that so far cannot be explained either within statistical (SMES, HRG) or dynamical (EPOS, UrQMD, PHSD, SMASH) models

    Measurements of π+\pi^+, π\pi^-, pp, pˉ\bar{p}, K+K^+ and KK^- production in 120 GeV/cc p + C interactions

    Full text link
    This paper presents multiplicity measurements of charged hadrons produced in 120 GeV/cc proton-carbon interactions. The measurements were made using data collected at the NA61/SHINE experiment during two different data-taking periods, with increased phase space coverage in the second configuration due to the addition of new subdetectors. Particle identification via dE/dxdE/dx was employed to obtain double-differential production multiplicities of π+\pi^+, π\pi^-, pp, pˉ\bar{p}, K+K^+ and KK^-. These measurements are presented as a function of laboratory momentum in intervals of laboratory polar angle covering the range from 0 to 450 mrad. They provide crucial inputs for current and future long-baseline neutrino experiments, where they are used to estimate the initial neutrino flux

    Measurements of K0^{0}S_{S}, Λ , and Λˉ\bar{Λ} production in 120 GeV / c p + C interactions

    Get PDF
    This paper presents multiplicity measurements of K0S, Λ, and ¯Λ produced in 120  GeV/c proton-carbon interactions. The measurements were made using data collected at the NA61/SHINE experiment during two different periods. Decays of these neutral hadrons impact the measured π+, π−, p and ¯p multiplicities in the 120  GeV/c proton-carbon reaction, which are crucial inputs for long-baseline neutrino experiment predictions of neutrino beam flux. The double-differential multiplicities presented here will be used to more precisely measure charged-hadron multiplicities in this reaction, and to reweight neutral hadron production in neutrino beam Monte Carlo simulations

    Measurements of Ξ{\Xi }{^-} and Ξ+\overline{\Xi }{^+} production in proton–proton interactions at sNN\sqrt{s_{NN}}=17.3 GeV = 17.3 GeV in the NA61/SHINE experiment

    Get PDF
    International audienceThe production of Ξ(1321)\Xi (1321)^{-} and Ξ(1321)+\overline{\Xi }(1321)^{+} hyperons in inelastic p+p interactions is studied in a fixed target experiment at a beam momentum of 158 GeV ⁣/ ⁣c\hbox {Ge}\hbox {V}\!/\!c. Double differential distributions in rapidity y{y} and transverse momentum pTp_{T} are obtained from a sample of 33M inelastic events. They allow to extrapolate the spectra to full phase space and to determine the mean multiplicity of both Ξ{\Xi }{^-} and Ξ+\overline{\Xi }{^+} . The rapidity and transverse momentum spectra are compared to transport model predictions. The Ξ{\Xi }{^-} mean multiplicity in inelastic p+p interactions at 158 GeV ⁣/ ⁣c\hbox {Ge}\hbox {V}\!/\!c is used to quantify the strangeness enhancement in A+A collisions at the same centre-of-mass energy per nucleon pair

    Measurement of hadron production in π^{–}−C interactions at 158 and 350 GeV / c with NA61/SHINE at the CERN SPS

    Get PDF
    We present a measurement of the momentum spectra of π ±^{±}, K±^{±}, p±^{±}, Λ, Λ\overline{Λ}, and K0^{0}S_{S} produced in interactions of negatively charged pions with carbon nuclei at beam momenta of 158 and 350 GeV/c. The total production cross sections are measured as well. The data were collected with the large-acceptance spectrometer of the fixed target experiment NA61/SHINE at the CERN SPS. The obtained double-differential p−pT spectra provide a unique reference dataset with unprecedented precision and large phase-space coverage to tune models used for the simulation of particle production in extensive air showers in which pions are the most numerous projectiles
    corecore