271 research outputs found

    High-K Precession modes: Axially symmetric limit of wobbling motion

    Full text link
    The rotational band built on the high-K multi-quasiparticle state can be interpreted as a multi-phonon band of the precession mode, which represents the precessional rotation about the axis perpendicular to the direction of the intrinsic angular momentum. By using the axially symmetric limit of the random-phase-approximation (RPA) formalism developed for the nuclear wobbling motion, we study the properties of the precession modes in 178^{178}W; the excitation energies, B(E2) and B(M1) values. We show that the excitations of such a specific type of rotation can be well described by the RPA formalism, which gives a new insight to understand the wobbling motion in the triaxial superdeformed nuclei from a microscopic view point.Comment: 14 pages, 8 figures (Spelling of the authors name was wrong at the first upload, so it is corrected

    Development of a low-background HPGe detector at Kamioka Observatory

    Full text link
    A new ultra-low background high-purity germanium (HPGe) detector has been installed at the Kamioka underground experimental site. The background count rate in the energy range from 40 keV to 2700 keV is about 25% lower than that of the first HPGe detector installed in 2016, which has the same detector specification and similar shielding geometry. This paper describes the shielding configuration, including the cleaning of the material surface, the comparison of calibration data and simulation, the time variation of the background spectra, the sample measurement procedure, and some results of the radioactivity in the selected samples

    Coulomb Breakup Mechanism of Neutron-Halo Nuclei in a Time-Dependent Method

    Full text link
    The mechanism of the Coulomb breakup reactions of the nuclei with neutron-halo structure is investigated in detail. A time-dependent Schr\"odinger equation for the halo neutron is numerically solved by treating the Coulomb field of a target as an external field. The momentum distribution and the post-acceleration effect of the final fragments are discussed in a fully quantum mechanical way to clarify the limitation of the intuitive picture based on the classical mechanics. The theory is applied to the Coulomb breakup reaction of 11^{11}Be + 208^{208}Pb. The breakup mechanism is found to be different between the channels of jπ=12j^{\pi}=\frac{1}{2}^{-} and 32\frac{3}{2}^{-}, reflecting the underlying structure of 11^{11}Be. The calculated result reproduces the energy spectrum of the breakup fragments reasonably well, but explains only about a half of the observed longitudinal momentum difference.Comment: 15 pages,revtex, 9 figures (available upon request

    QCD Sum Rules, Scattering Length and the Vector Mesons in Nuclear Medium

    Get PDF
    Critical examination is made on the relation between the mass shift of vector mesons in nuclear medium and the vector-meson - nucleon scattering length. We give detailed comparison between the QCD sum rule approach by two of the present authors (Phys. Rev. {\bf C46} (1992) R34) and the scattering-length approach by Koike (Phys. Rev. {\bf C51} (1995) 1488). It is shown that the latter approach is mortally flawed both technically and conceptually.Comment: 16 pages, latex, 4 figures appended as uu-encoded fil

    Tensor Coupling and Vector Mesons in Dense Nuclear Matter

    Full text link
    The effects of magnetic interaction between vector mesons and nucleons on the propagation (mass and width) of the ρ\rho-meson in particular moving through very dense nuclear matter is studied and the modifications, qualitative and quantitative, due to the relevant collective modes (zero-sound and plasma frequencies) of the medium discussed. It is shown that the ρ\rho-mesons produced in high-energy nuclear collisions will be longitudinally polarized in the region of sufficiently dense nuclear matter, in the presence of such an interaction.Comment: Plain Latex file. Three figures, not appended, may be obtained on request to [email protected]

    Analysis of exchange terms in a projected ERPA Theory applied to the quasi-elastic (e,e') reaction

    Get PDF
    A systematic study of the influence of exchange terms in the longitudinal and transverse nuclear response to quasi-elastic (e,e') reactions is presented. The study is performed within the framework of the extended random phase approximation (ERPA), which in conjuction with a projection method permits a separation of various contributions tied to different physical processes. The calculations are performed in nuclear matter up to second order in the residual interaction for which we take a (pi+rho)-model with the addition of the Landau-Migdal g'-parameter. Exchange terms are found to be important only for the RPA-type contributions around the quasielastic peak.Comment: 29 pages, 6 figs (3 in postscript, 3 faxed on request), epsf.st

    PICH promotes sister chromatid disjunction and co-operates with topoisomerase II in mitosis

    Get PDF
    PICH is a SNF2 family DNA translocase that binds to ultra-fine DNA bridges (UFBs) in mitosis. Numerous roles for PICH have been proposed from protein depletion experiments, but a consensus has failed to emerge. Here, we report that deletion of PICH in avian cells causes chromosome structural abnormalities, and hypersensitivity to an inhibitor of Topoisomerase II (Topo II), ICRF-193. ICRF-193-treated PICH-/- cells undergo sister chromatid non-disjunction in anaphase, and frequently abort cytokinesis. PICH co-localises with Topo IIα on UFBs and at the ribosomal DNA locus, and the timely resolution of both structures depends on the ATPase activity of PICH. Purified PICH protein strongly stimulates the catalytic activity of Topo II in vitro. Consistent with this, a human PICH-/- cell line exhibits chromosome instability and chromosome condensation and decatenation defects similar to those of ICRF-193-treated cells. We propose that PICH and Topo II cooperate to prevent chromosome missegregation events in mitosis

    Prime movers : mechanochemistry of mitotic kinesins

    Get PDF
    Mitotic spindles are self-organizing protein machines that harness teams of multiple force generators to drive chromosome segregation. Kinesins are key members of these force-generating teams. Different kinesins walk directionally along dynamic microtubules, anchor, crosslink, align and sort microtubules into polarized bundles, and influence microtubule dynamics by interacting with microtubule tips. The mechanochemical mechanisms of these kinesins are specialized to enable each type to make a specific contribution to spindle self-organization and chromosome segregation

    First measurement of the strange axial coupling constant using neutral-current quasi-elastic interactions of atmospheric neutrinos at KamLAND

    Full text link
    We report a measurement of the strange axial coupling constant gAsg_A^s using atmospheric neutrino data at KamLAND. This constant is a component of the axial form factor of the neutral current quasi-elastic (NCQE) interaction. The value of gAsg_A^s significantly changes the ratio of proton and neutron NCQE cross sections. KamLAND is suitable for measuring NCQE interactions as it can detect nucleon recoils with low energy thresholds and measure neutron multiplicity with high efficiency. KamLAND data, including the information on neutron multiplicity associated with the NCQE interactions, makes it possible to measure gAsg_A^s with a suppressed dependence on the axial mass MAM_A, which has not yet been determined. For a comprehensive prediction of the neutron emission associated with neutrino interactions, we establish a simulation of particle emission via nuclear de-excitation of 12^{12}C, a process not considered in existing neutrino Monte Carlo event generators. Energy spectrum fitting for each neutron multiplicity gives gAs=0.140.26+0.25g_A^s =-0.14^{+0.25}_{-0.26}, which is the most stringent limit obtained using NCQE interactions without MAM_A constraints
    corecore