137 research outputs found

    Surface impacts of the Quasi Biennial Oscillation

    Get PDF
    Teleconnections between the Quasi Biennial Oscillation (QBO) and the Northern Hemisphere zonally averaged zonal winds, mean sea level pressure (mslp) and tropical precipitation are explored. The standard approach that defines the QBO using the equatorial zonal winds at a single pressure level is compared with the empirical orthogonal function approach that characterizes the vertical profile of the equatorial winds. Results are interpreted in terms of three potential routes of influence, referred to as the tropical, subtropical and polar routes. A novel technique is introduced to separate responses via the polar route that are associated with the stratospheric polar vortex, from the other two routes. A previously reported mslp response in January, with a pattern that resembles the positive phase of the North Atlantic Oscillation under QBO westerly conditions, is confirmed and found to be primarily associated with a QBO modulation of the stratospheric polar vortex. This mid-winter response is relatively insensitive to the exact height of the maximum QBO westerlies and a maximum positive response occurs with westerlies over a relatively deep range between 10 and 70hPa. Two additional mslp responses are reported, in early winter (December) and late winter (February/March). In contrast to the January response the early and late winter responses show maximum sensitivity to the QBO winds at  ∼ 20 and  ∼ 70hPa respectively, but are relatively insensitive to the QBO winds in between ( ∼ 50hPa). The late winter response is centred over the North Pacific and is associated with QBO influence from the lowermost stratosphere at tropical/subtropical latitudes in the Pacific sector. The early winter response consists of anomalies over both the North Pacific and Europe, but the mechanism for this response is unclear. Increased precipitation occurs over the tropical western Pacific under westerly QBO conditions, particularly during boreal summer, with maximum sensitivity to the QBO winds at 70hPa. The band of precipitation across the Pacific associated with the Inter-tropical Convergence Zone (ITCZ) shifts southward under QBO westerly conditions. The empirical orthogonal function (EOF)-based analysis suggests that this ITCZ precipitation response may be particularly sensitive to the vertical wind shear in the vicinity of 70hPa and hence the tropical tropopause temperatures

    Evaluation of the Quasi‐Biennial Oscillation in global climate models for the SPARC QBO‐initiative

    Get PDF
    The Quasi‐Biennial Oscillation initiative (QBOi) is a model intercomparison programme that specifically targets simulation of the QBO in current global climate models. Eleven of the models or model versions that participated in a QBOi intercomparison study have upper boundaries in or above the mesosphere and therefore simulate the region where the stratopause semiannual oscillation (SAO) is the dominant mode of variability of zonal winds in the tropical upper stratosphere. Comparisons of the SAO simulations in these models are presented here. These show that the model simulations of the amplitudes and phases of the SAO in zonal‐mean zonal wind near the stratopause agree well with the information derived from available observations. However, most of the models simulate time‐average zonal winds that are more westward than determined from observations, in some cases by several tens of m·s1^{–1}. Validation of wave activity in the models is hampered by the limited observations of tropical waves in the upper stratosphere but suggests a deficit of eastward forcing either by large‐scale waves, such as Kelvin waves, or by gravity waves

    NONLINEAR SEISMIC RESPONSE ANALYSIS OF HIGH-SPEED RAILWAY VIADUCTS CONSIDERING TRAIN LOAD

    Get PDF
    The Thirteenth East Asia-Pacific Conference on Structural Engineering and Construction (EASEC-13), September 11-13, 2013, Sapporo, Japan

    Iopamidol

    No full text

    NUMERICAL ANALYSIS AND REINFORCEMENT EFFECT EVALUATION ON SEISMIC RESPONSE OF SHINKANSEN VIADUCTS UNDER DYNAMIC TRAIN LOAD

    Get PDF
    The Thirteenth East Asia-Pacific Conference on Structural Engineering and Construction (EASEC-13), September 11-13, 2013, Sapporo, Japan

    Vertical resolution dependence of gravity wave momentum flux simulated by an atmospheric general circulation model

    No full text
    The dependence of the gravity wave spectra of energy and momentum flux on the horizontal resolution and time step of atmospheric general circulation models (AGCMs) has been thoroughly investigated in the past. In contrast, much less attention has been given to the dependence of these gravity wave parameters on models' vertical resolutions. The present study demonstrates the dependence of gravity wave momentum flux (GWMF) in the stratosphere and mesosphere on the model's vertical resolution, which is evaluated using an AGCM with a horizontal resolution of about 0.56°. We performed a series of sensitivity test simulations changing only the model's vertical resolution above a height of 8 km, and found a global reduction of GWMF with increasing vertical resolution. Inertial gravity waves with short vertical wavelengths simulated at higher vertical resolutions might play an important role in determining GWMF in the summertime stratosphere. The sensitivity test simulation also demonstrated the importance of the model's vertical resolution on representing realistic behaviors of gravity waves near their critical level
    corecore