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expression for the energy flux associated with
both equatorial and mid-latitude waves
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Abstract

For mid-latitude Rossby waves (RWs) in the atmosphere, the expression for the energy flux for use in a model
diagnosis, and without relying on a Fourier analysis or a ray theory, has previously been derived using
quasi-geostrophic equations and is singular at the equator. By investigating the analytical solution of both equatorial
and mid-latitude waves, the authors derive an exact universal expression for the energy flux which is able to indicate
the direction of the group velocity at all latitudes for linear shallow water waves. This is achieved by introducing a
streamfunction as given by the inversion equation of Ertel’s potential vorticity, a novel aspect for considering the
energy flux. For ease of diagnosis from a model, an approximate version of the universal expression is explored and
illustrated for a forced/dissipative equatorial basin mode simulated by a single-layer oceanic model that includes both
mid-latitude RWs and equatorial waves. Equatorial Kelvin Waves (KWs) propagate eastward along the equator, are
partially redirected poleward as coastal KWs at the eastern boundary of the basin, and then shed mid-latitude RWs
that propagate westward into the basin interior. The connection of the equatorial and coastal waveguides has been
successfully illustrated by the approximate expression of the group-velocity-based energy flux of the present study.
This will allow for tropical-extratropical interactions in oceanic and atmospheric model outputs to be diagnosed in
terms of an energy cycle in a future study.

Keywords: Group velocity, Model diagnosis, Equatorial Rossby waves, Equatorial mixed Rossby-gravity waves,
Equatorial inertia-gravity waves, Equatorial Kelvin waves, Coastal Kelvin waves, Mid-latitude Rossby waves,
Mid-latitude inertia-gravity waves, Tropical-extratropical interactions

Introduction
A feature of many phenomena in the equatorial oceans
is the role played by equatorial Kelvin waves (KWs),
examples being El Niño Southern Oscillation (ENSO;
Philander 1989) and the so-called Atlantic Niño (Merle
1980). KWs propagate along the equator and are par-
tially redirected into coastal KWs at the eastern boundary,
where they can influence off-equatorial latitudes (e.g.,
Lübbecke et al. 2010) as well as excite extratropical Rossby
waves (RWs) that subsequently propagate into the ocean
interior (McPhaden and Ripa 1990; Isachsen et al. 2007).
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A striking example of this behavior is the equatorial basin
mode (Cane andMoore 1981). For the gravest basinmode,
the time scale is set by the time taken for an equatorial
KW to propagate across the basin and for the reflected
gravest long Rossby wave to return to the western bound-
ary (that is 4L/c where L is the basin width and c is the
phase propagation speed for KWs). In addition to waves
that are trapped on the equator, equatorial basin modes
also feature coastal KWs that propagate along the eastern
boundary and extratropical RWs that are excited by these
KWs and refocus on the equator, as described by Schopf
et al. (1981). There is growing evidence that equatorial
basin modes play an important role in equatorial ocean
dynamics. For example, basin modes have been associated
with the equatorial deep jets (Johnson and Zhang 2003;
Brandt et al. 2011; Claus et al. 2016) and with the semi-
annual (Thierry et al. 2004) and annual cycles (Brandt
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et al. 2016) in the equatorial Atlantic. However, the energy
cycle associated with equatorial basin modes has received
little attention and is an important factor when consid-
ering the forced/dissipative basin modes that one can
relate to observations. A particularly interesting exam-
ple is the upward energy propagation associated with the
Atlantic equatorial deep jets (Johnson and Zhang 2003;
Brandt et al. 2011;Mathiessen et al. 2015). Yet, the detailed
energy cycle associated with the jets remains largely
unknown.
One way to approach the energy flux is to use ray theory.

However, ray theory is linked to the dispersion relation
of a single type of wave and is not suitable for inves-
tigating the sequential connection of different types of
waves that are associated with a basin mode. Likewise,
a Fourier analysis is not suitable for the investigation of
waves near the coastal boundaries of the ocean. In fact, it
is only for mid-latitude inertia-gravity waves (IGWs) that
the flux of wave energy has been diagnosed from oceanic
model output (Cummins and Oey 1997; Niwa and Hibiya
2004; Furuichi et al. 2008). On the other hand, in the
atmospheric literature, the model diagnosis of pseudomo-
mentum (or wave activity) flux has been more popular
than the model diagnosis of the energy flux (Hoskins et al.
1983; Plumb 1986; Takaya andNakamura 1997; Nakamura
and Solomon 2011).
Here, we seek a general expression that can be used

to diagnose the energy flux associated with linear shal-
low water waves at all latitudes from model output. This
manuscript is organized as follows. First we provide the
theoretical background. Then, we present an analytical
investigation that leads to a general expression for the
energy flux that can indicate the exact profile of the
group velocity times wave energy for both equatorial and
mid-latitude waves. The utility of the universal expres-
sion of energy flux as a model diagnostic is illustrated
for a forced/dissipative equatorial basin mode simulated
by a single-layer model. The model diagnosis is achieved
by introducing an inversion for the linearized version
of Ertel’s potential vorticity. This is a novel aspect for
considering the energy flux in the presence of a coastal
waveguide that connects the equatorial and mid-latitude
regions.

Theoretical background
We use the shallow water equations for a single verti-
cal normal mode (Gill 1982) appropriate to linear waves
in a rotating frame of reference and in the absence of
a mean flow. Let an arbitrary variable with an asso-
ciated physical dimension be expressed by A∗, and let
Cartesian-horizontal coordinates be labelled by the set
of independent variables x∗, y∗, t∗, where each of x∗, y∗
increases eastward and northward, respectively, and u∗, v∗
are the corresponding horizontal components of velocity

(a list of variables is given in Table 1)1. The equations may
then be written as

∂u∗

∂t∗
− f ∗v∗ + ∂p∗

∂x∗ = 0, (1a)

∂v∗

∂t∗
+ f ∗u∗ + ∂p∗

∂y∗ = 0, (1b)

∂p∗

∂t∗
+ c∗2

(
∂u∗

∂x∗ + ∂v∗

∂y∗

)
= 0, (1c)

where f ∗ = f ∗
0 + β∗y∗ is the Coriolis parameter, p∗ =

p∗(x∗, y∗, t∗) corresponds to the pressure2 or geopotential,
and c∗ is a uniform constant representing the propaga-
tion speed of nonrotating gravity waves for a given mode.
Manipulation of (1a)–(1c) yields a prognostic equation for
the linearized version of Ertel’s potential vorticity (here-
after EPV and symbolized as q∗) to read

∂

∂t∗
( ∂v∗

∂x∗ − ∂u∗

∂y∗ − f ∗

c∗2
p∗

︸ ︷︷ ︸
≡q∗

)
+ v∗β∗ = 0, (2)

which is applicable to waves at all latitudes, such as mid-
latitude RWs, mid-latitude IGWs, and equatorial waves
[i.e., equatorial RWs and IGWs, equatorial Rossby-gravity
waves (RGWs, i.e., Yanai waves), and equatorial KWs;
Matsuno 1966; Yanai and Maruyama 1966], understand-
ing f ∗

0 = 0 for an equatorial β-plane and β∗ = 0 for a
mid-latitude f -plane. Both mid-latitude IGWs (i.e., β∗ =

Table 1 List of symbols, where A∗ and A are arbitrary quantities
written dimensionally or non-dimensionally, respectively

f ∗ = f ∗0 + β∗y∗ Coriolis parameter

c∗ Speed of long gravity wave

x, y, t Cartesian coordinates wherein x and y increase
eastward and northward

〈〈a, b〉〉 Horizontal vector with eastward and northward
components a and b

V = 〈〈u, v〉〉 Horizontal velocity vector

∇ ≡ 〈〈∂x , ∂y〉〉 Horizontal gradient operator

p Pressure

q ≡ vx − uy − yp Linearized Ertel’s potential vorticity: q∗ ≡ v∗
x∗ −u∗

y∗ −
(f ∗/c∗2)p∗

ϕ Solution of ∇2ϕ − y2ϕ − 3ϕtt = q, see (16) & (17a)

ϕapp Solution of ∇2ϕapp − y2ϕapp = q, see (26a) & (18a)

(u2 + v2 + p2)/2 Wave energy: (u∗2 + v∗2 + p∗2/c∗2)/2
θ = kx − ωt Wave phase

k Zonal wavenumber

ω Wave frequency

H(n) Hermite polynomial, see endnote 1

n Meridional mode number of free equatorial waves

A Phase average of A
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0) and equatorial KWs (i.e., v∗ = 0) are characterized by
q∗ = 0, as noted in Table 2.
On the other hand, a prognostic equation for wave

energy may be derived from (1a)–(1c) as

∂

∂t∗
1
2

(
u∗2 + v∗2 + p∗2

c∗2

)
+ ∇∗ · 〈〈u∗p∗, v∗p∗〉〉 = 0, (3)

where∇∗ ≡ 〈〈 ∂
∂x∗ , ∂

∂y∗ 〉〉 and the overbar symbol represents
a phase-average operator (i.e., for a sinusoidal wave, A∗ =
0 for A∗ = u∗, v∗, and p∗) or a low-pass time filter (for this
reason, we retain the local time derivative in (3) to allow
for slow time variations in the general case).
Formid-latitude IGWs in the ocean and atmosphere, the

group velocity vector points in the same direction as the
energy flux vector in (3):

V∗p∗ = 〈〈u∗p∗, v∗p∗〉〉, (4)

a property that has been exploited by Cummins and Oey
(1997), Niwa and Hibiya (2004), and Furuichi et al. (2008)
for a model diagnosis. However, for mid-latitude RWs, the
vector in (4) does not point in the direction of the group
velocity of the waves (Longuet-Higgins 1964; Masuda
1978; Cai andHuang 2013). In order to retrieve the correct
direction for the energy flux associated with mid-latitude
RWs, Orlanski and Sheldon (1993, hereafter OS93) have
suggested to modify (3), without affecting the horizontal
divergence of the energy flux, as

∂

∂t∗
1
2

(
u∗2 + v∗2 + p∗2

c∗2

)
+

∇∗ ·
〈〈
u∗p∗ + ∂

∂y∗

(
p∗2

2f ∗

)
, v∗p∗ − ∂

∂x∗

(
p∗2

2f ∗

) 〉〉
= 0,

(5)

where each of u∗ and v∗ should be the sum of the
geostrophic and ageostrophic components and f ∗ = f ∗

0 +

Table 2 Characteristics of different waves at various latitudes

V∗p∗ parallel to q∗ = 0

group velocity (ϕapp∗ = 0)

Equatorial Rossby wave No No

Equatorial mixed
Rossby-gravity wave

Depends on frequency No

Equatorial inertia-gravity
wave

Roughly yes No

Equatorial Kelvin wave Yes Yes

Coastal Kelvin wave Yes Yes

Mid-latitude Rossby wave No No (ϕapp∗ � p∗/f ∗)
Mid-latitude inertia-gravity
wave

Yes Yes

β∗y∗ is understood. The energy flux vector in (5) consists
of two terms,

V∗p∗ − ∇∗×[ p∗2/(2f ∗)] z, (6)

where V∗p∗ is as in the gravity wave literature (i.e., V∗ is
the sum of the geostrophic and ageostrophic components
of velocity). The second term in (6) is the additional rota-
tional component required to reproduce the direction of
the group velocity of mid-latitude RWs (z is the upward
vertical unit vector). In Longuet-Higgins (1964), the sec-
ond term of (6) has been expressed as −∇∗×[ f ∗ψ∗2/2] z
where ψ∗ is a streamfunction based on the assumption
of horizontally nondivergent velocity. This assumption
is hardly used in modern oceanography owing to the
smallness of the deformation radius. In quasi-geostrophic
theory, ψ∗ = p∗/f ∗ from which the connection with
(6) is clear.
The question naturally arises as to whether or not it

is possible to find a general expression for the additional
rotational flux, R∗, that holds for waves at all latitudes
and is such that the corresponding energy flux V∗p∗ + R∗
always points in the direction of the group velocity and
thus constitutes a general expression for the energy flux
associated with waves at all latitudes. This is the main sub-
ject of the present study. In this study, we focus on wave
types for which the group velocity has been well formu-
lated in the literature/textbook, as listed in Table 2. Of
particular interest is the energy flux associated with equa-
torial RWs given that the expression in (6) is singular at
the equator. The assumption of horizontally nondivergent
velocity in Longuet-Higgins (1964) is also inappropriate
for equatorial regions. In the next section, by investigat-
ing the analytical solution of equatorial waves, we derive
an exact universal expression for the rotational flux which,
after being added to V∗p∗, is able to indicate the direction
of the group velocity for linear waves at all latitudes.

Analytical investigation
We begin by revisiting analytical expressions for the pro-
file of the energy flux associated with equatorial waves.
This investigation allows us to derive an expression for
the energy flux that points in the direction of the group
velocity for waves at all latitudes.

Energy flux associated with equatorial waves
We assume linear waves in the absence of a mean flow
on an equatorial β-plane. As in Matsuno (1966) and Gill
(1982), we use a time scale 1/

√
c∗β∗ and a length scale√

c∗/β∗ to nondimensionalize the equation system (1a)–
(1c) to give

ut − yv + px = 0, (7a)
vt + yu + py = 0, (7b)
pt + ux + vy = 0, (7c)
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where symbols without an asterisk indicate nondimen-
sionalized quantities and subscripts indicate partial dif-
ferentiations. Manipulation of (7a)–(7c) yields prognostic
equations for EPV and wave energy in a nondimensional-
ized form to read,

∂t(vx − uy − yp︸ ︷︷ ︸
≡q

) + v = 0, (8)

∂t(u2 + v2 + p2)/2 + ∇ · 〈〈up, vp〉〉 = 0, (9)

where ∂t ≡ ∂
∂t ,∇ ≡ 〈〈 ∂

∂x ,
∂
∂y 〉〉, and for A = u, v, or p, A = 0

for sinusoidally varying waves.
In what follows, we assume v 	≡ 0 which is appropriate

for equatorial RWs, RGWs, and IGWs (i.e., waves other
than equatorial KWs). Then, we consider zonally propa-
gating free waves with a relationship v ∝ cos θ , u ∝ sin θ ,
and p ∝ sin θ where θ ≡ kx− ωt is wave phase with k and
ω being wavenumber and wave frequency, respectively.
Substitution of these relationships to (7a)–(7c), followed
by some manipulation, yields a characteristic equation for
the meridional structure of v to read,

vyy + (ω2 − k2 − k/ω − y2)v = 0. (10)

Matsuno (1966) has derived a solution for (7a)–(7c) and
(10) to yield,

v = A cos θ exp(−y2/2)H(n), (11a)
u = (ωyvθ − kvyθ )/(ω2 − k2), (11b)
p = (kyvθ − ωvyθ )/(ω2 − k2), (11c)

where A is wave amplitude and the symbol H(n) is the
Hermite polynomial with n being the meridional mode
number3. The subscript θ represents partial differentia-
tion in terms of the wave phase [i.e., vθ ≡ ∂v/∂θ =
−A sin θ exp(−y2/2)H(n)].
Substitution of (11a) to (10) yields,

ω3 − (k2 + 2n + 1)ω − k = 0, (12)

which is a unified dispersion relation for equatorial RWs,
RGWs, and IGWs. Partial differentiation of (12) with
respect to wavenumber k yields a unified expression for
the group velocity of equatorial waves,

∂ω

∂k
= 2kω + 1

3ω2 − (k2 + 2n + 1)
= 2ω2 + ω/k

2ω3/k + 1
, (13)

where 2ω3/k in the denominator has often been ignored
in previous studies when focusing on low-frequency equa-
torial waves (e.g., equatorial RWs; Gill 1982).
We now investigate the energy flux associated with

(7a)–(7c). It is known that, for zonally propagating equa-
torial waves, the meridional integral of up is equal to the

group velocity times the meridional integral of the wave
energy (Philander 1989):

∫ +∞

−∞
up dy = (∂ω/∂k)

∫ +∞

−∞
(u2 + v2 + p2)/2 dy.

(14a)

It should be noted that the identity (14a) does not hold if
it is evaluated without the meridional integral:

up 	= (∂ω/∂k)(u2 + v2 + p2)/2. (14b)

For low-frequency equatorial waves (with ω < 1—
see Fig. 1—, i.e., all equatorial RWs and westward
propagating RGWs), the meridional profiles of up and
(∂ω/∂k)(u2 + v2 + p2)/2 are shown by the dashed green
and solid black lines, respectively, in Fig. 2. It is clear that,
when compared at a given latitude, up is not equal to the
group velocity times wave energy. In particular, the merid-
ional profile of up is sign-indefinite for low-frequency
equatorial waves (Fig. 2). On the other hand, as shown by
the dashed green and solid black lines in Fig. 3 for high-
frequency equatorial waves (withω > 1— see Fig. 1—, i.e.,
all equatorial IGWs and eastward propagating RGWs), the
meridional profile of up provides a much better approxi-
mation for the group velocity times wave energy. The solid
blue line, dashed orange line, and purple dots in Figs. 2
and 3 are explained later in the manuscript.

Fig. 1 Dispersion relation of free equatorial waves for a given
meridional number n, as given by Eq. (12). Axes have been
non-nondimensionalized by

√
β∗c∗ for wave frequency ω and by√

β∗/c∗ for zonal wavenumber k. The red dots locate the parameters
used to produce the 10 panels in Figs. 2 and 3
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Fig. 2 Meridional profiles of the zonal component of phase-averaged energy flux associated with equatorial waves; the solid black line is
(∂ω/∂k)(u2 + v2 + p2)/2, the dashed green line is up, the dashed orange line is up + (pϕapp/2 + uttϕapp)y , the solid blue line is up + (pϕapp/2)y , and

the purple dots are (ω/k)(E − v2) = (ω/k)(u2 − v2 + p2)/2. All panels are for low-frequency equatorial waves with ω < 1: a westward propagating
RGWs, b short and c long RWs in the 1st meridional mode, and d short and e long RWs in the 2nd meridional mode. The associated values of
meridional-mode number n, zonal wavenumber k, wave frequency ω, and group velocity ∂ω/∂k are noted in each panel. For each of a–e, the wave
amplitude A in (11a) has been set to normalize the meridional integral of wave energy:

∫ ∞
−∞(u2 + v2 + p2)/2dy = 1

a b

d

e

c

Fig. 3 Same as Fig. 2 except for high-frequency equatorial waves with ω > 1: a westward and b eastward propagating IGWs in the 2nd meridional
mode, c westward and d eastward propagating IGWs in the 1st meridional mode, and e eastward propagating RGWs
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Identification of the additional rotational flux associated
with equatorial waves
It is useful to derive the analytical expression for the dif-
ference between the left and right hand sides of (14b). A
first step for identifying the difference is to decompose
the zonal component of up into two parts, one that deter-
mines the meridional integral and one that does not affect
it, as follows:

up

= [
y2vv(ωk) − yvyv

(
ω2 + k2

) + vyvy(ωk)
]
/
(
ω2 − k2

)2
= {

vyyv(ωk) + vv
(
ω3k − ωk3 − k2

)
−

[
(yvv/2)y − vv/2

] (
ω2 + k2

) + vyvy(ωk)
}

/
(
ω2 − k2

)2
=

[
vv

(
2ω3k − 2ωk3 − k2 + ω2) + (

vyv
)
y (2ωk)

− (yvv)y
(
ω2 + k2

)]
/
[
2

(
ω2 − k2

)2]

= vv (2ωk + 1) /
[
2

(
ω2 − k2

)]
+ [

vyv(2ωk) − yvv
(
ω2 + k2

)]
y /

[
2

(
ω2 − k2

)2] ,
(14c)

where the first equality has been derived using (11b)–
(11c) and sin θ sin θ = cos θ cos θ and the second equality
has been derived using (10). Note that it is the second
of the two terms whose meridional integral is zero (not-
ing that v and yv go to zero at large distances from the
equator).
We now decompose the wave energy4 into two parts,

one that determines the meridional integral and one does
not. We then have

(
u2 + v2 + p2

)
/2

= vv/2 + [(
y2vv + vyvy

) (
ω2 + k2

)
− (

yvyv
)
(4kω)

]
/
[
2

(
ω2 − k2

)2]

= vv/2 +
{[

y2vv − vyyv + (
vyv

)
y

] (
ω2 + k2

)

− (yvv)y (2kω) + (vv) (2kω)
}

/
[
2

(
ω2 − k2

)2]

= [
vv

(
k4 − 2k2ω2 + ω4 + ω4 − k4 + kω − k3/ω

)
+ (

vyv
)
y
(
ω2 + k2

) − (yvv)y (2kω)
]
/
[
2

(
ω2 − k2

)2]

= vv
(
2ω2 + k/ω

)
/
[
2

(
ω2 − k2

)]
+ [

vyv
(
ω2 + k2

) − yvv(2kω)
]
y /

[
2

(
ω2 − k2

)2] ,
(14d)

where the first equality has been derived using (11b)–
(11c) and sin θ sin θ = cos θ cos θ , and the third equality
has been derived using (10). As before, it is the second
of the two terms whose meridional integral is zero. Using
(14c)–(14d), we now obtain an analytical expression for

the difference between the right and left hand sides of
(14b) to yield

(∂ω/∂k)(u2 + v2 + p2)/2 − up

= (vyv)y
2(ω2 − k2)2

[
(2ω2 + ω/k)(ω2 + k2)

2ω3/k + 1
− 2ωk

]

− (yvv)y
2(ω2 − k2)2

[
(2ω2 + ω/k)2kω

2ω3/k + 1
− (ω2 + k2)

]

= (vyv)y(2ω4 + 2ω2k2 + ω3/k + ωk − 4ω4 − 2ωk)
2(ω2 − k2)2(2ω3/k + 1)

− (yvv)y(4ω3k + 2ω2 − 2ω5/k − 2ω3k − ω2 − k2)
2(ω2 − k2)2(2ω3/k + 1)

= (vyθvθ )y(ω/k − 2ω2) − (yvθvθ )y(1 − 2ω3/k)
2(ω2 − k2)(2ω3/k + 1)

= [ (ωvyθ − kyvθ )vθ ]y +[ (−kvyθ + ωyvθ )vθ ]y (2ω2)

2k(ω2 − k2)(2ω3/k + 1)

= −(pvθ )y − (2uttvθ )y
2k(1 + 2ω3/k)

, (14e)

where the first and second equalities have been derived
using (13), the third equality has been derived using
cos θ cos θ = sin θ sin θ , and the last equality has been
derived using (11b)–(11c). The last line of (14e) has been
written as the meridional gradient of scalar quantities.
Thus, the meridional integral of (14e) vanishes for equa-
torial waves (with a meridionally decaying structure) and
is consistent with (14a).
Using (14e), we can now rewrite the zonal component

of the group velocity times wave energy as

(∂ω/∂k)(u2 + v2 + p2)/2 = up + (pϕ/2 + uttϕ)y, (15a)
ϕ ≡ −vθ /(k + 2ω3), (15b)

where the scalar quantity ϕ has been introduced. We have
confirmed that, as long as ϕ is set by (15b), the merid-
ional profile of the zonal energy flux, up+ (pϕ/2+uttϕ)y,
in (15a) is precisely identical to (∂ω/∂k)(u2 + v2 + p2)/2
for all types of equatorial waves in Figs. 2 and 3. Namely,
all solid black lines in Figs. 2 and 3 may be drawn using
either expression. As far as we know, (15a) and (15b) have
not been mentioned in previous studies and therefore
constitute a new result.

Inversion equations for Ertel’s potential vorticity
The definition of ϕ, as given by (15b), is based on a Fourier
expansion. However, we have found that (15b) may be
rewritten into an expression which contains none of θ , k,
and ω to read

∇2ϕ − y2ϕ − 3ϕtt = −vθ /ω

= q, (16)
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where ∇2 ≡ ∂xx +∂yy is understood, the first line has been
derived using (10), and the second line has been derived
using (8) [i.e., qt = −ωqθ = −v and thus −ωqθθ =
ωq = −vθ ]. The new Eq. (16) of EPV is the corner-
stone of the present study, because it suggests a possibility
for the scalar quantity ϕ to be estimated without using a
Fourier analysis. This feature is important for identifying
the direction of the energy flux of waves in the presence of
coastal boundaries.
To summarize, in order to reproduce the profile of

the group velocity times wave energy without relying on
a Fourier analysis, we have obtained a new expression
for the energy flux that has turned out to be associated
with the streamfunction Eq. (16). Equation (16) may be
rewritten into a dimensional form as

∇∗2ϕ∗ − (f ∗/c∗)2ϕ∗ − (3/c∗2)ϕ∗
t∗t∗ = q∗, (17a)

where ∇∗ ≡ 〈〈∂x∗ , ∂y∗〉〉 and q∗ = v∗
x∗ − u∗

y∗ − (f ∗/c∗2)p∗.
The exact profile of the group velocity times wave energy
may be reproduced by the right hand side of (15a) and is
here rewritten into a vector and dimensional form as

V∗p∗ − ∇∗×[ (p∗ϕ∗)/2 + (u∗
t∗t∗ϕ

∗)/β∗] z. (17b)

The additional rotational flux in (17b) corrects the pro-
file of the energy flux, without affecting the divergence
of the energy flux. The quantity ϕ∗ in (17b) is the solu-
tion of the accurate streamfunction Eq. (17a) associated
with EPV in a dimensional form. We note in passing
that for zonally propagating equatorial waves, as given by
(11a)–(11c), v∗p∗ vanishes owing to the phase relationship
between v∗ and p∗ [see (11a) and (11c)] and themeridional
component of the additional rotational flux, −(p∗ϕ∗/2 +
u∗
t∗t∗ϕ

∗/β∗)x∗ , also vanishes.

Equatorial KWs
So far, we have not investigated the energy flux of equa-
torial KWs. Since KWs are gravity waves, V∗p∗ becomes
equal to the group velocity times wave energy. Namely, the
additional rotational flux is absent. KWs are also charac-
terized by q∗ = 0; hence, the EPV equation (17a) yields
ϕ∗ = 0. The result is that, in the case of KWs, the expres-
sion for the energy flux, as given by (17b) reduces toV∗p∗,
which is consistent with the nature of gravity waves.

Boundary conditions and the connection to mid-latitude
regions
Consider a basin with closed zonal boundaries (i.e., the
eastern and western coastlines of a basin of arbitrary
shape). It is clear that the flux V∗p∗ in (17b) has no
component normal to the zonal boundaries. Hence, the
additional rotational flux in (17b) should also have no
component crossing the closed boundaries. This require-

ment is satisfied in the present study by solving (17a) with
a boundary condition of

ϕ∗ = 0. (17c)

In a general situation in the ocean, waves propagating
eastward along the equatorial waveguide are partially
redirected poleward as KWs along the eastern boundary
where they can shed RWs that then propagate westward
into the ocean interior (Cane and Moore 1981; Philander
1989; Chelton and Schlax 1996; Isachsen et al. 2007).
We now investigate whether or not the set of (17a)

and (17b) is applicable to off-equatorial regions where
small-amplitude perturbations are characterized by either
mid-latitude RWs or IGWs. For perturbations associated
with mid-latitude RWs, the solution ϕ∗ of (17a) corre-
sponds to the geostrophic streamfunction for which ϕ∗ �
p∗/f ∗ is a reasonable approximation in an interior region
(i.e., far from coastal boundaries), noting that ∇∗2ϕ∗ cor-
responds to v∗

x∗ − u∗
y∗ . The result is that the energy flux

in (17b) automatically reduces to the expression of OS93
for mid-latitude RWs5. On the other hand, if perturba-
tions associated with mid-latitude IGWs are given, the
inversion Eq. (17a) of EPV, which equals zero, yields, with
ϕ∗ = 0 on the boundaries, ϕ∗ = 0 everywhere. Thus, the
energy flux in (17b) automatically reduces to V∗p∗ which
represents the group velocity of mid-latitude IGWs times
wave energy. We conclude that the set of (17a) and (17b)
can represent the exact profile of the group velocity times
wave energy associated with both mid-latitude IGWs and
RWs, which may be reconfirmed using almost the same
procedure as in the “Identification of the additional rota-
tional flux associated with equatorial waves” section. See
Appendix 1 for details.

Methods/Experimental
The rest of this manuscript presents an example illustrat-
ing the diagnosis of the energy flux from a model. To be
useful for our discussion, the exact universal expression
for both equatorial and mid-latitude waves, as given by
the set of (17a) and (17b), is hereafter referred to as the
level-0 energy flux. In practice, the level-0 expression of
the energy flux is not straightforward to compute from
model output, since the second-order time derivative term
in (17a) makes it difficult to solve for ϕ∗.
For the present study, we investigate the consequence

of artificially removing the second-order time derivative
term from (17a) to give

∇∗2ϕapp∗ − (f ∗/c∗)2ϕapp∗ = q∗, (18a)

which may be justified at least for low-frequency waves
(e.g., both equatorial and mid-latitude RWs) based on
scale analysis. The superscript of ϕapp∗ indicates that the
solution of (18a) may be regarded as an approximation for
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the solution ϕ∗ of the accurate streamfunction Eq. (17a)
associated with EPV. Then, we replace ϕ∗ in (17b) with
ϕapp∗ to read

V∗p∗ − ∇∗×[ (p∗ϕapp∗)/2 + (u∗
t∗t∗ϕ

app∗)/β∗] z,
(18b)

which is diagnosable6 from model output and is referred
to as the level-1 expression of the energy flux in the
present study. As shown by the dashed orange lines in
Fig. 2, the level-1 expression provides a nice approxi-
mation for the group-velocity-based energy flux of low-
frequency equatorial waves, but not for high-frequency
equatorial waves in Fig. 3. Next, with the form of the addi-
tional rotational flux −∇∗×[ p∗2/(2f ∗)] z in (6) in mind,
we investigate the consequence of simplifying (18b) as

V∗p∗ − ∇∗ × (p∗ϕapp∗/2)z, (18c)

which we refer to as the level-2 expression for the energy
flux. As shown by the solid blue lines in Figs. 2 and 3,
the level-2 expression provides an approximation for the
group-velocity-based energy flux of both low- and high-
frequency equatorial waves, although there can be some
error. Further discussion of the level-2 approximation is
given in Appendices 2 and 3 where it is noted that the
level-2 approximation is comparable in accuracy to the
pseudomomentum (or wave-activity) flux used in previ-
ous studies (Randel and Williamson 1990; Brunet and
Haynes 1996; Fukutomi and Yasunari 2002; Wakata and
Kitaya 2002; Kawatani et al. 2010).
We now contrast both the level-1 and level-2 energy

fluxes with the expressions in previous studies, given by
(6) and (4), using a solution from a linear shallow water
model. This illustrates the potential of the expression
given by (18b) and (18c) for use as a model diagnostic
(see Table 3). Suitable for this purpose is an equato-
rial basin mode solution since it is associated with both
equatorial and coastal waveguides as well as the radia-
tion of mid-latitude RWs into the basin interior. Further-
more, as noted in the Introduction section, the equatorial

basin mode, first studied by Cane and Moore (1981), has
recently attracted attention because of its importance in
the dynamics of the equatorial Atlantic Ocean. Indeed, the
annual cycle, the semi-annual cycle, and the interannual
variability associated with the Atlantic equatorial deep jets
(Brandt et al. 2011) all appear to be resonant excitations of
equatorial basin modes [see Brandt et al. (2016) and Claus
et al. (2016) for more details].

Model set-up
To illustrate the importance of dissipation for explaining
the observed cross-equatorial width of the equatorial deep
jets, Greatbatch et al. (2012, hereafter G12) have simulated
a forced/dissipative basin mode solution using a single-
layer reduced-gravity linear model. The model is set up
in spherical coordinates, with a rectangular domain in lat-
itude/longitude space of roughly the same width as the
Atlantic Ocean at the equator (that is 55◦ in longitude)
and reaching to 10◦N/S on either side of the equator7.
All lateral boundaries are closed. In both G12 and Claus
et al. (2014, hereafter C14), the model has been forced by
an idealized oscillatory forcing with a period of 4.5 years
in the zonal momentum equation to mimic the forcing of
the jets, together with a lateral mixing of momentum that
provides dissipation. [See Ascani et al. (2015) for a discus-
sion on the forcing of the equatorial deep jets, the details
of which are not important here]. It should be noted that
4.5 years is roughly the time taken for an equatorial KW
and the reflected long gravest equatorial RW, to travel
across the basin for the vertical mode that is closest to
resonance. As noted inG12 andC14, the (westward) prop-
agation speed of equatorial long RWs is three times less
than the (eastward) propagation speed of equatorial KWs
[see the dispersion relation (12)].
Our model has been set up as in G12 and C14. The grav-

ity wave speed is set equal to c∗ = 0.17 m/s [see the upper
panel in Fig. 4 of C14]. The equatorial deformation radius
becomes

√
c∗/β∗ = 87 km, with a consequence that dis-

turbances further than a few degrees from the equator in
our model experiment may be regarded as mid-latitude

Table 3 List of energy flux vectors and EPV-based streamfunctions in dimensional form and their location in the text and figures

Approx. Energy flux vector Equation Figs. 2 & 3 Figs. 6 & 7

Level-0 V∗p∗ − ∇∗×[ (p∗ϕ∗)/2 + (u∗
t∗t∗ϕ

∗)/β∗] z (15a), (17b), (23a) Solid black –

Level-1 V∗p∗ − ∇∗×[ (p∗ϕapp∗)/2 + (u∗
t∗t∗ϕ

app∗)/β∗] z (18b), (26b) Dashed orange –

Level-2 V∗p∗ − ∇∗ × (p∗ϕapp∗)/2z (18c), (26c) Solid blue (c)

QG V∗p∗ − ∇∗×[ p∗2/(2f ∗)] z (5), (6) – (b)

f -Plane V∗p∗ (3), (4) Dashed green (a)

Definition of EPV-based streamfunctions

∇∗2ϕ∗ − (f ∗/c∗)2ϕ∗ − (3/c∗2)ϕ∗
t∗t∗ = q∗ , (15b), (16), (17a), (23c)

∇∗2ϕapp∗ − (f ∗/c∗)2ϕapp∗ = q∗ , (18a), (26a)
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Table 4 Parameters in the model experiment of the present
study

Long gravity wave speed c∗ = 0.17 m/s

Equatorial deformation radius
√
c∗/β∗ = 87 km

Equatorial inertial period 2π/
√
c∗β∗ = 37 days

Forcing period T∗ = 4.5 years

Forcing amplitude 10−10 m/s2

Forcing area Full domain

Domain size 55◦ (zonal) × 20◦ (meridional)

Forcing Froude number (0.0023 m/s)/c∗ = 0.014

Horizontal resolution 0.1◦ (zonal) × 0.1◦ (meridional)

Lateral eddy viscosity 10 m2/s

RWs, even though they are part of the equatorial basin
mode resonance. As in G12, our model has been formu-
lated in a spherical coordinate system with a grid spacing
of 0.1◦ in both longitude and latitude. The coefficient8 of
eddy viscosity has been set to 10 m2/s. From an initial

condition of no motion and no pressure anomaly, the
model has been integrated for 20 cycles (i.e., 90 years)
using the oscillatory forcing which is sufficient for a steady
oscillatory state to be reached. Since the model code is
fully non-linear, we have set the amplitude of the forc-
ing to a small value, 1.0 × 10−10 m/s2 to ensure that
linear dynamics prevails. Indeed, the magnitude of veloc-
ity associated with the gravest basin mode may be scaled
as 10−10 m/s2 × 4.5 years/(2π) = 0.0023 m/s, which
results in a Froude number of (0.0023 m/s)/c∗ = 0.014
(nondimensional). These parameters are summarized in
Table 4. Below, we show results from an experiment which
corresponds to the “full” case in G12. In particular, the
oscillatory zonal forcing is spatially uniform and acts over
the whole model domain. All the model results shown
below are averages over the last model cycle.

Results and discussion
At each time step of the model output, we have calcu-
lated the EPV-based streamfunction ϕapp∗ (contours in

a b

d

f

h

c

e

g

Fig. 4 Left panels are the snapshots of the EPV-based streamfunction ϕapp∗ (solid and dotted line contours for positive and negative values,
respectively, with an interval of 60 m2/s) and thickness anomaly (color shading, normalized). Right panels are the snapshots of the zonal component
of velocity u∗ (color shading, m/s). These snapshots have been adapted from the 20th cycle of the model experiment, wherein the period of the
oscillatory forcing is T∗ = 4.5 years; the reference layer thickness is H∗ = 100 m, and the equatorial deformation radius is

√
c∗/β∗ = 87 km. See also

movie (Additional file 1)
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the left panels of Fig. 4) by solving the spherical coor-
dinate version of (18a) with the boundary condition of
ϕapp∗ = 0. The color shading in Fig. 4 shows the snap-
shots of thickness anomaly (left panels) and the zonal
component of velocity u∗ (right panels). The movie of the
model experiment is found in Additional file 1. RWs are
identified by the correlation (anticorrelation) between the
EPV-based streamfunction and thickness anomaly in the
northern (southern) hemisphere. This follows from the
correspondence between the EPV-based streamfunction
and the geostrophic streamfunction for the case of mid-
latitude RWs, as noted earlier. As noted in G12 and C14,
the (westward) propagation speed of equatorial long RWs
is three times smaller than the (eastward) propagation
speed of equatorial KWs [see the dispersion relation (12)].
It takes a three-quarter cycle (i.e., 3T∗/4) for equatorial
long RWs to travel westward from the eastern boundary
to the western boundary of the model domain (see red
lines in Fig. 5a). After reflection at the western boundary,
it takes only a quarter of a cycle (i.e., T∗/4) for equa-
torial KWs to travel eastward to the eastern boundary
of the model domain (see blue lines in Fig. 5a), where
some disturbances are deflected poleward along the east-
ern boundary to be the source of mid-latitude RWs which
then propagate westward (Fig. 5b).
In Fig. 6, the divergence of the horizontal energy flux,

given by ∇∗ · V∗p∗, is shown for the whole model domain
using color shading. Red indicates regions of a net energy
input, and blue indicates regions of a net dissipation. It is
clear that the main region of energy input is in the central
part of the basin along the equator, where the strongest
zonal velocities are found, and that the main regions
of energy loss are associated with the RWs that radiate
away from the eastern boundary. Arrows in Fig. 6a show
the energy flux used in the gravity-wave literature, V∗p∗,
which is mostly westward along the equator and eastward
in the immediate off-equatorial region. This can be clearly
seen in Fig. 7a which shows a blow-up of the eastern equa-
torial region. Figures 6b and 7b show the energy flux given
by (6), which has been adapted from OS93, where only
regions more than 1◦ latitude away from the equator are
plotted to avoid the singularity in the Coriolis parame-
ter f ∗ at the equator. From these figures (especially the
blow-up of the eastern equatorial region in Fig. 7a, b), it is
clear that the energy flux is strongly reversed when com-
pared to V∗p∗ in the immediate off-equatorial region and
is now strongly eastward in association with RWs that are
radiated from the eastern boundary.
From Figs. 6c and 7c, it is clear that when the set of

Eqs. (18a), (18c) and (17c) is used to estimate the energy
flux, the westward flux associated with the off-equatorial
RWs is part of a recirculation of energy in the eastern part
of the basin (Fig. 7c) with eastward energy flux along the
equator and westward energy flux off the equator. The

a

b

Fig. 5 a Hovmoller diagram at the equator for thickness anomaly
(color shading, normalized) with the blue and red lines indicating the
phase speeds of equatorial Kelvin waves and long Rossby waves,
respectively. b Hovmoller diagram at 2◦N for thickness anomaly (color
shading, normalized) and the EPV-based streamfunction (contours,
plotted as in the left panels of Fig. 4)

eastward flux along the equator in Figs. 6c and 7c is in the
opposite direction to the westward V∗p∗ flux in Figs. 6a
and 7a along the equator in the same region. This indi-
cates the role of the rotational flux contribution in (18c)
which counters the westward V∗p∗ flux along the equator.
This westward flux is associated with the equatorial RWs
but represents an overestimation of the energy flux asso-
ciated with these waves (see Fig. 2). When the rotational
flux is added, what emerges is the eastward flux associ-
ated with the KW which, in turn, leads to a poleward flux
arising from KWs propagating along the eastern bound-
ary and, in turn, leads to the westward flux associated
with the off-equatorial RWs that are excited at the eastern
boundary. Here, in terms of the transfer of wave energy,
the equatorial waveguide has been connected to the east-
ern coastal waveguide and, in turn, to the basin interior at
off-equatorial latitudes, which is at the heart of the present
study.
Finally, we note that the forcing period of T∗ = 4.5 years

is much longer than the equatorial inertial period of
2π/

√
c∗β∗ = 37 days. It can be said that the simulated

equatorial basin mode consists of low-frequency equato-
rial waves, as in Fig. 2, andmid-latitude RWs.We recall the
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Fig. 6 Comparisons of three expressions for the horizontal flux of
wave energy (arrows): a the pressure flux [see Eq. (3)], b the pressure
flux plus the additional rotational flux of Orlanski and Sheldon (1993)
[see Eq. (4)], and c the pressure flux plus the additional rotational flux
of the present study [see Eq. (15)]. In both b and c, the additional
fluxes have been calculated using the rotation operator in the
spherical coordinate system to be consistent with the model
formulation. Green contours in b and c show the distributions of
p∗2/(2f ∗) and p∗ϕapp∗/2, respectively (solid and dotted lines indicate
positive and negative values, respectively, with an interval of
10−2 m4/s3) . Color shading in all panels shows the horizontal
divergence of the time-averaged energy flux. Note that the additional
rotational flux in b and c has no influence on the divergence. All
quantities have been calculated from the output of the same
experiment with a time-average between t∗ = 19T∗ and 20T∗

small difference between the solid blue and dashed orange
lines in Fig. 2, the former and the latter of which may be
written as u∗p∗ + (p∗ϕapp∗/2)y∗ and u∗p∗ + (p∗ϕapp∗/2 +
u∗
t∗t∗ϕ

app∗/β∗)y∗ , respectively, in a dimensional form (see
level-2 and level-1, respectively, in Table 3). Since arrows
in Figs. 6c and 7c have been plotted using the expression
which corresponds to the solid blue line in Fig. 2, we have
checked for any improvement by using the expression
which corresponds to the dashed orange lines in the same
figure. The checking has been done by comparing the
distribution of p∗ϕapp∗/2 and u∗

t∗t∗ϕ
app∗/β∗, from which

a

b

c

Fig. 7 Same as Fig. 6 except that this is an enlarged view of the
eastern equatorial region of the model domain

we have learned that the latter quantity (not shown) is
three orders of magnitude smaller than the former. Thus,
we conclude that, in the diagnosis of the simulated basin
mode, the expression of the energy flux, as given by (18c),
has provided a nice approximation for the group velocity
times wave energy.

Conclusions
In previous studies of the ocean, the energy flux of waves
in model output has been diagnosed using V∗p∗, where
V∗ is the horizontal component of velocity perturbation
and p∗ corresponds to the pressure perturbation. This is
appropriate for understanding the energy flux associated
with mid-latitude inertia-gravity waves (IGWs). For mid-
latitude Rossby waves (RWs), however, the direction of
V∗p∗ differs from the group velocity and hence the energy
flux, by a rotational vector flux with zero divergence. The
rotational flux to be added to V∗p∗ for estimating the
group velocity of mid-latitude RWs has previously been
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derived using quasi-geostrophic equations and is singular
at the equator.
By investigating the analytical solution of both equa-

torial waves (“Analytical investigation” section) and mid-
latitude waves (Appendix 1), we have derived an exact
universal9 expression for the rotational flux which, after
being added to V∗p∗, is able to indicate the profile of
the group velocity times wave energy for linear waves
at all latitudes. This is what we call the level-0 expres-
sion of the energy flux. The level-0 energy flux is written
using the solution ϕ∗ of (17a), previously unmentioned in
the literature, which we refer to as the accurate stream-
function associated with Ertel’s potential vorticity (EPV).
Equation (17a) is the cornerstone of the present study,
because it suggests a possibility for the energy flux to be
estimated (i) without using a Fourier analysis nor ray the-
ory and (ii) in the presence of coastal boundaries, which
will allow for tropical-extratropical interactions in model
output to be diagnosed in terms of an energy cycle in
a future study. Presently, the level-0 energy flux is not
practical for use as a model diagnostic, since the second-
order time derivative term in (17a) makes it difficult to
solve for ϕ∗. Thus, we hope that a future study is able to
develop a numerical algorithm to solve (17a) for ϕ∗. We
also note the need to extend the theory to a continuously
stratified ocean and also to test out the theory in the pres-
ence of a sheared mean flow, both of which topics await
a future study. This is a new step from the recent under-
standing of energetics in the atmosphere and ocean that
had been focused on, for example, the global mapping of
energy conversion rates associated with various physical
processes (e.g., baroclinic and barotropic instabilities) and
external forcing (Iwasaki 2001; Aiki and Richards 2008;
Zhai et al. 2012).
The potential of our analysis as a model diagnostic is

illustrated in the present study for a forced/dissipative
equatorial basin mode simulated by a single-layer model.
The model result includes both mid-latitude RWs (main-
tained by coastal KWs propagating poleward along the
eastern boundary) and equatorial RWs (maintained by the
reflection of equatorial KWs at the eastern boundary).
We have used approximate expressions for the energy
flux (what we call the level-1 and level-2 energy fluxes)
that is based on the inversion equation (18a) of EPV
and which is shown to be good approximations to the
level-0 expression in the case of the model run being
considered. Since (18a) is seamlessly solvable at all lat-
itudes with ϕapp∗ = 0 at coastlines, the source of the
westward energy flux of mid-latitude RWs in the model
output has been successfully illustrated in the present
study. To our knowledge, this is the first attempt to diag-
nose the energy cycle of a tropical-extratropical interac-
tion associated with the connection of the equatorial and
coastal waveguides.

Endnotes
1While the energy flux of waves at all latitudes is con-

sidered in the present study, the pseudomomentum (or
wave-activity) flux of waves at all latitudes is considered
in Aiki et al. (2015, hereafter ATG15). Both the formula-
tions of the present study and ATG15 may be reproduced
even if a spherical coordinate system is used. The use
of a Cartesian horizontal coordinate system in both the
present study and ATG15 is for the purpose of simplicity,
which will allow for the results of the two studies to be
linked in a future study. A related discussion appears in
Appendix 3.

2What we call pressure, energy, and momentum in
the present study are actually dynamic pressure, energy
density, and momentum density, respectively, following
ATG15.

3dH(n)/dy = 2nH(n−1), H(n+1) = 2yH(n) − 2nH(n−1),
H(0) = 1, H(1) = 2y, H(2) = 4y2 − 2, H(3) = 8y3 − 12y,
H(4) = 16y4 − 48y2 + 12.

4The factor ∂ω/∂k to calculate the energy flux is added
in (14e).

5 The second term in the square brackets of (17b) van-
ishes as u∗

t∗t∗ϕ
∗ � (−p∗

y∗t∗t∗/f ∗)(p∗/f ∗) = 0 where the
phase relationship of plane waves is understood.

6We use the term “diagnosable” to indicate that the
quantity is readily estimated from quantities in model
output without relying on a Fourier analysis.

7 In a related paper, Claus et al. (2014) also used this
solution to investigate the influence of the barotropic
mean flow on the Atlantic equatorial deep jets. The
Atlantic equatorial deep jets are resonant with the gravest
basin mode for a high-order baroclinic mode (typically
the 15th vertical normal mode) and consist of vertically
stacked zonal jets that oscillate at a given depth with a
period of around 4.5 years.

8 This is lower than the value recommended by G12 for
capturing the observed width of the deep jets but is cho-
sen here since it is not so large as to prevent focusing of
RWs on the equator. In the inviscid solution of Cane and
Moore (1981), there is a singularity on the equator at the
center of the basin due to RW focusing as described by
Schopf et al. (1981).

9 In the present manuscript, we have used the term
“exact” to refer to the level-0 expression, in contrast
to approximate expressions (i.e., level-1 and -2). Like-
wise, we have used the term “universal” to indicate the
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ability to handle all wave types in Table 2, for which the
group velocity has been well formulated in the litera-
ture/textbook.

10Although it is not in the list of wave types in Table 2,
IGWs on a mid-latitude β-plane may be characterized as
α  1, δ2 ≤ 1, γ 2 < 1 where α  1 corresponds to
(19b). Thus, the net content in the square brackets on the
last line of (24c) becomes O(1). Given α in front of c∗v∗v∗
on the last line of (24c), we may justify (23d) for IGWs
on a mid-latitude β-plane. It can be said that the right
hand side of (24c) becomes significantly nonzero when
the assumption of plane waves in the meridional direction
becomes inconsistent (Anderson and Gill 1979).

11While the pseudomomentum flux itself (E∗ − v∗v∗) is
diagnosable from model output, the pseudomomentum-
flux-based expression of the energy flux (E∗ − v∗v∗)ω∗/k∗
is not easily diagnosable from model output because of
multiplication by the phase speed (see Appendix 3 for
details).

Appendix 1
Is the streamfunction Eq. (17a) associated with EPV
applicable to mid-latitude waves?
Manipulation of the shallow water equation system (1a)–
(1c) yields a characteristic equation associated with the
meridional component of velocity to read

v∗
t∗t∗t∗ − c∗2

(
v∗
x∗x∗ + v∗

y∗y∗
)
t∗

+ f ∗2v∗
t∗ − β∗c∗2v∗

x∗ = 0,
(19a)

which is applicable to both mid-latitude and equatorial
regions. In what follows, we consider plane waves on
either an f -plane or a mid-latitude β-plane (i.e., f ∗ =
f ∗
0 + β∗y∗ and |f ∗

0 | � |β∗y∗|) and thus assume

f ∗2 � f ∗2
0 . (19b)

Then, (19a) may be simplified as

v∗
t∗t∗t∗ − c∗2

(
v∗
x∗x∗ + v∗

y∗y∗
)
t∗

+ f ∗2
0 v∗

t∗ − β∗c∗2v∗
x∗ = 0.
(19c)

The Coriolis parameter f ∗
0 in (19c) is constant that allows

us to assume a horizontally monochromatic wave in a
complex form

v∗ = A ∗eiθ , (20a)

where i is the unit imaginary number, A ∗ is wave ampli-
tude, and θ = k∗x∗ + l∗y∗ − ω∗t∗ is wave phase (k∗
and l∗ are the zonal and meridional components of a
wavenumber vector, respectively, and ω∗ is wave phase).
For simplicity, all A ∗, k∗, l∗, and ω∗ are assumed to be
constant. Substitution of (20a) to both (1a) and (1c) yields
a solution for u∗ and p∗ to read

u∗ = (
f ∗ω∗v∗

θ + c∗2k∗l∗v∗) /
(
ω∗2 − c∗2k∗2) , (20b)

p∗ = (
f ∗k∗v∗

θ + ω∗l∗v∗) c∗2/ (
ω∗2 − c∗2k∗2) , (20c)

where f ∗ = f ∗
0 + β∗y∗. On the other hand, substitution of

(20a) to (19c) yields

ω∗3 − c∗2
(
k∗2 + l∗2

)
ω∗ − f ∗2

0 ω∗ − β∗c∗2k∗ = 0, (21)

which is a universal expression for the dispersion rela-
tion of the various types of waves in mid-latitude regions.
For example, substitution of β∗ = 0 to (21) yields
a classical dispersion relation for mid-latitude IGWs
(i.e., waves on an f -plane), and substitution of ω∗2 
c∗2k∗2 to (21) yields a classical dispersion relation for
mid-latitude RWs.
An expression for the zonal component of group veloc-

ity may be derived using (21) to read

∂ω∗

∂k∗ = 2c∗2k∗ω∗ + β∗c∗2

3ω∗2 − c∗2
(
k∗2 + l∗2

) − f ∗2
0

= 2c∗2ω∗2k∗ + β∗c∗2ω∗

2ω∗3 + β∗c∗2k∗ . (22a)

We now identify the content of (A∗B∗)y∗ in the following
equation:

u∗p∗ + (
A∗B∗)

y∗ = ∂ω∗

∂k∗
1
2

(
u∗2 + v∗2 + p∗2

c∗2

)
, (22b)

where each of A∗ and B∗ are quantities associated with
the set of u∗, v∗, p∗, c∗, and f ∗. A first step for investigat-
ing (22b) is to decompose u∗p∗ into two parts: one that
is associated with the numerator of (22a) and one that is
written as the meridional derivative of a scalar quantity, as
follows:

u∗p∗ = v∗v∗ (
f ∗2 + c∗2l∗2

)
c∗2ω∗k∗

(
ω∗2 − c∗2k∗2)2

� v∗v∗ (
ω∗3 − c∗2k∗2ω∗ − β∗c∗2k∗) c∗2k∗

(
ω∗2 − c∗2k∗2)2

= v∗v∗c∗2ω∗k∗(
ω∗2 − c∗2k∗2) −

(
f ∗v∗v∗)

y∗ c
∗4k∗2

(
ω∗2 − c∗2k∗2)2

= v∗v∗ (
2c∗2ω∗k∗ + β∗c∗2

)
2

(
ω∗2 − c∗2k∗2)

−
(
f ∗v∗v∗)

y∗ c
∗2 (

ω∗2 + c∗2k∗2)
2

(
ω∗2 − c∗2k∗2)2 , (22c)

where the first equality has been derived using both
(20b)–(20c) and the set of v∗v∗ = v∗

θv
∗
θ and v∗

θv∗ = 0 and
the approximate equality in the middle has been derived
using both the dispersion relation (21) and (19b). Then,
we decompose the wave energy in (22b) into two parts,
one that is associated with the denominator of (22a) and
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one that is written as the meridional derivative of a scalar
quantity. We then have

1
2

(
u∗2 + v∗2 + p∗2

c∗2

)

= v∗v∗ (
ω∗2 − c∗2k∗2)2

2
(
ω∗2 − c∗2k∗2)2

+ v∗v∗ (
ω∗2f ∗2 + c∗4k∗2l∗2 + k∗2f ∗2c∗2 + ω∗2l∗2c∗2

)
2

(
ω∗2 − c∗2k∗2)2

=
v∗v∗

[(
ω∗2 − c∗2k∗2)2 + (

f ∗2 + c∗2l∗2
) (

ω∗2 + c∗2k∗2)]

2
(
ω∗2 − c∗2k∗2)2

� v∗v∗ (
ω∗2 − c∗2k∗2)2

2
(
ω∗2 − c∗2k∗2)2

+ v∗v∗ (
ω∗2 − c∗2k∗2 − β∗c∗2k∗/ω∗) (

ω∗2 + c∗2k∗2)
2

(
ω∗2 − c∗2k∗2)2

= v∗v∗ω∗2(
ω∗2 − c∗2k∗2) −

(
f ∗v∗v∗)

y∗ c
∗2k∗ (

ω∗2 + c∗2k∗2)
2ω∗ (

ω∗2 − c∗2k∗2)2

= v∗v∗ (
2ω∗3 + β∗c∗2k∗)

2ω∗ (
ω∗2 − c∗2k∗2) −

(
f ∗v∗v∗)

y∗ 2c
∗2ω∗k∗

2
(
ω∗2 − c∗2k∗2)2 ,

(22d)

where the first equality has been derived using both
(20b)–(20c) and the set of v∗v∗ = v∗

θv
∗
θ and v∗

θv∗ = 0 and
the approximated equality in the middle has been derived
using both the dispersion relation (21) and (19b). The set
of (22c) and (22d) allows us to identify the content of
(A∗B∗)y∗ in (22b) to read

∂ω∗

∂k∗
1
2

(
u∗2 + v∗2 + p∗2

c∗2

)
− u∗p∗

� −(f ∗v∗v∗)y∗c∗2

2(ω∗2 − c∗2k∗2)2
{ (2c∗2ω∗2k∗ + β∗c∗2ω)2k∗ω∗

2ω∗3 + β∗c∗2k∗

− (ω∗2 + c∗2k∗2)
}

= −(f ∗v∗v∗)y∗c∗2

2(ω∗2 − c∗2k∗2)2
{ (4c∗2ω∗3k∗2 + 2β∗c∗2ω∗2k∗)

2ω∗3 + β∗c∗2k∗

+ (−2ω∗5 − 2c∗2ω∗3k∗2 − β∗c∗2ω∗2k∗ − β∗c∗4k∗3)
2ω∗3 + β∗c∗2k∗

}

= −(f ∗v∗
θv

∗
θ )y∗c∗2(β∗c∗2k − 2ω∗3)

2(ω∗2 − c∗2k∗2)(2ω∗3 + β∗c∗2k∗)

= −(f ∗v∗
θv

∗
θ )y∗c∗2[ 1 − 2ω∗3/(β∗c∗2k∗)]

2(ω∗2 − c∗2k∗2)[ 2ω∗3/(β∗c∗2k∗) + 1]

= −[ (f ∗k∗v∗
θ + ω∗l∗v∗)c∗2v∗

θ ]y∗
2k∗(ω∗2 − c∗2k∗2)[ 2ω∗3/(β∗c∗2k∗) + 1]

+ [ (f ∗ω∗v∗
θ + c∗2k∗l∗v∗)v∗

θ ]y∗ 2ω∗2/β∗

2k∗(ω∗2 − c∗2k∗2)[ 2ω∗3/(β∗c∗2k∗) + 1]

= −(p∗v∗
θ )y∗ − (2u∗

t∗t∗v
∗
θ )y∗/β

∗

2k∗[ 1 + 2ω∗3/(β∗c∗2k∗)]
,

(22e)

where the last equality has been derived using (20a)–(20c).
Equation (22e) may be rewritten as

u∗p∗+(p∗ϕ∗/2 + u∗
t∗t∗ϕ

∗/β∗)y∗

= ∂ω∗

∂k∗
1
2

(
u∗2 + v∗2 + p∗2

c∗2

)
, (23a)

where

ϕ∗ ≡ −v∗
θ

k∗ + 2ω∗3/(β∗c∗2)
, (23b)

has been introduced. The definition of ϕ∗, as given by
(23b), is based on a Fourier expansion and may be rewrit-
ten into an expression which contains none of θ , k∗, l∗, and
ω∗ to read

∇∗2ϕ∗ − (f ∗
0 /c∗)2ϕ∗ − (3/c∗2)ϕ∗

t∗t∗ = −β∗v∗
θ /ω

∗

= q∗, (23c)

where the first equality has been derived using (20b) and
the second equality has been derived using (2) [i.e., q∗

t∗ =
−ω∗q∗

θ = −β∗v∗ and thus −ω∗q∗
θθ = ω∗q∗ = −β∗v∗

θ ].
As far as we know, the set of (23a) and (23c) has not been
mentioned in previous studies for mid-latitude waves and
has turned out to be almost the same as the set of (17b)
and (17a) that has been derived for equatorial waves.
We now consider the meridional flux of wave energy.

We would like to show that

v∗p∗− (p∗ϕ∗/2 + u∗
t∗t∗ϕ

∗/β∗)x∗︸ ︷︷ ︸
0

= ∂ω∗

∂l∗
1
2

(
u∗2 + v∗2 + p∗2

c∗2

)
. (23d)

It turns out that the second term on the left hand side,
associated with the additional rotational flux, vanishes
when evaluated using the analytical solution of waves [i.e.,
(v∗v∗)x∗ = kv∗

θv∗ = 0], which is as in Longuet-Higgins
(1964). This is attributed to the assumption of all A ∗,
k∗, l∗, and ω∗ being constant in particular in the zonal
direction. An expression for the meridional component of
group velocity may be derived from (21) to read

∂ω∗

∂l∗
= 2c∗2l∗ω∗

3ω∗2 − c∗2(k∗2 + l∗2) − f ∗2
0

= 2c∗2l∗ω∗2

2ω∗3 + β∗c∗2k∗ . (24a)

Then, we calculate the left hand side of (23d) using (20a)–
(20b) as

v∗p∗ = v∗v∗c∗2ω∗l∗

ω∗2 − c∗2k∗2 , (24b)

where v∗
θv∗ = 0 has been used. We now calculate the dif-

ference of the meridional component of the group velocity
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times wave energy and v∗p∗ using the set of (22d), (24a),
and (24b) to yield

∂ω∗

∂l∗
1
2

(
u∗2 + v∗2 + p∗2

c∗2

)
− v∗p∗

= − 2c∗4k∗l∗ω∗3

(2ω∗3 + β∗c∗2k∗)
(f v∗v∗)y∗

(ω∗2 − c∗2k∗2)2

= − 2β∗c∗3k∗l∗

(2 + β∗c∗2k∗/ω∗3)
c∗v∗v∗

ω∗4(1 − c∗2k∗2/ω∗2)2

= −
[

2δ2

(2 + αδ2γ )(1 − γ 2)2
c∗2k∗l∗

ω∗2

]
αc∗v∗v∗, (24c)

where the last line has been written using the set of
nondimensional parameters. These are defined as

α ≡ β∗c∗/f ∗2
0 , δ ≡ f ∗

0 /ω∗, γ ≡ c∗k∗/ω∗. (24d)

It can be said that the last line of (24c) represents the con-
tribution of higher order terms in an asymptotic expan-
sion based on α, δ, and γ . This contribution should not
be confused with the universal expression of the addi-
tional rotational flux which has already been clarified at
(23a) and (23d). It should be also noted that the net con-
tent within the square brackets on the last line of (24c) is
nondimensional, for which we shall make scale analysis in
the next paragraph.
The quantity αc∗v∗v∗ on the last line of (24c) may

be interpreted as a reference for the magnitude of the
energy flux of mid-latitude RWs. Mid-latitude RWs may
be characterized as

|αγ | = β∗c∗2/f ∗2
0

|ω∗/k∗| ≥ 1, δ2 � 1, γ 2 � 1. (25a)

Thus, the net content within the square brackets on the
last line of (24c) approximates to zero, which justifies
(23d) for mid-latitude RWs. On the other hand, for mid-
latitude IGWs, c∗v∗v∗ on the last line of (24c) represents a
reference for the magnitude of the energy flux. IGWs on
an f -plane may be characterized as

α = 0, δ2 ≤ 1, γ 2 < 1. (25b)

Thus, the last line of (24c) vanishes, which justifies (23d)
for IGWs on an f -plane10.
To summarize, the streamfunction Eq. (17a) associated

with EPV and the universal expression of the additional
rotational flux in (17b) applies to both mid-latitude and
equatorial waves, in particular for wave types considered
in the present study, as listed in Table 2.

Appendix 2
Approximate expressions for the energy flux
The exact profile of the group velocity times wave energy
is given by the set of (15a) and (16), which is what we
call the level-0 energy flux. Owing to the last term on
the left hand side of (16) that contains the second-order
partial differentiation with respect to time, the procedure
of inverting EPV, without using a Fourier analysis, is still
complicated.
Hence, we investigate the consequence of artificially

removing the second-order time derivative term from (16)
as

∇2ϕapp − y2ϕapp = q, (26a)

where the superscript of ϕapp indicates that the solution of
(26a) may be regarded as an approximation for the solu-
tion ϕ of the accurate streamfunction Eq. (16) associated
with EPV. We have calculated the meridional profiles of

up + (pϕapp/2 + uttϕapp)y, (26b)

as shown by the dashed orange lines in Fig. 2 for low-
frequency equatorial waves (e.g., equatorial RWs) and in
Fig. 3 for high-frequency equatorial waves (e.g., equatorial
IGWs). Since this is an analytical investigation, we have
used ϕapp = −vθ /(k − ω3) which has been derived from
the EPV inversion Eq. (26a) with the use of the charac-
teristic Eq. (10). All panels in Fig. 2 show a nice agree-
ment between the dashed orange line given by (26b) and
the solid black line, (∂ω/∂k)(u2 + v2 + p2). By contrast,
all panels in Fig. 3 show a finite disagreement between
the dashed orange line given by (26b), up + (pϕapp/2 +
uttϕapp)y, and the solid-black line, (∂ω/∂k)(u2 + v2 + p2).
It would be nice if there is a unified approximation

for the energy flux that is able to represent the profile
of the group velocity times the energy of both low- and
high-frequency equatorial waves. We have found that this
requirement is roughly satisfied if (26b) is simplified as

up + (pϕapp/2)y, (26c)

where ϕapp = −vθ /(k − ω3) is the solution of (26a).
The profile of (26c) is shown by the solid blue lines
in Figs. 2 and 3 for low- and high-frequency equato-
rial waves, respectively. This expression provides what
we think is a potentially useful approximation for the
group velocity times wave energy (the solid black lines)
for all types of equatorial waves, as we show in the
“Methods/Experimental” section.
In the present study, (26b) and its vector and dimen-

sional form (18b) are referred to as the level-1 energy flux.
Likewise, (26c) and its vector and dimensional form (18c)
are referred to as the level-2 energy flux.
Why do we appreciate the level-2 energy flux regard-

less of the error? An expression for pseudomomentum (or
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wave-activity) flux has long been used for the model diag-
nosis of the direction of the group velocity of waves in
the atmosphere (and also the ocean), including in low-
latitude regions (Ripa 1982; Hoskins et al. 1983; Plumb
1986; Haynes 1988; Randel and Williamson 1990; Brunet
and Haynes 1996; Fukutomi and Yasunari 2002; Wakata
and Kitaya 2002; Kawatani et al. 2010). Using the analyt-
ical solution of equatorial waves, we have calculated the
profile of the traditional pseudomomentum flux11 times
the phase velocity of waves (see Appendix 3), as shown
by the purple dots in Figs. 2 and 3. Interestingly, for low-
frequency waves, the profile of the pseudomomentum-
flux-based expression (the purple dots) is almost the
same as that of the level-2 energy flux (the blue solid
line). On the other hand, for high-frequency waves,
the profile of the pseudomomentum-flux-based expres-
sion (the purple dots) is similar to that of the level-1
energy flux (the orange dashed line) and quite different
from the exact, level-0 energy flux to which the level-2
energy flux is a better approximation. Thus, the level-2
energy flux is, in general, an improvement on the tra-
ditional model diagnosis of group velocity based on the
pseudomomentum flux.
Concerning extension to mid-latitude waves, both the

level-1 and level-2 energy fluxes satisfy all conditions
noted in the last paragraph of the “Boundary conditions
and the connection to mid-latitude regions” section. Note
that the inversion Eq. (18a) of EPV is seamlessly solvable
at all latitudes with the boundary condition of ϕapp∗ =
0. To summarize, the set of (18a) and (18c) [together
with the boundary condition (17c)]—what we call the
level-2 expression—originates from a trade-off between
mathematical exactness and practical accessibility. The
mathematical exactness for retrieving the group velocity
of equatorial waves times wave energy has been achieved
by the set of (17a) and (17b)—what we call the level-
0 expression. However, its accessibility is harmed by the
second-order time derivative term in the streamfunction
equation (16) associated with EPV. On the other hand,
concerning the practical accessibility, the set of (18a) and
(18c)—the level-2 expression—has the advantages that (i)
it is seamlessly solvable at all latitudes and (ii) it provides
a unified expression for all types of waves with which
to estimate the direction of the group velocity. We have
noted, for equatorial waves, that the profile of the level-2
energy flux is somewhat better than that of the traditional
pseudomomentum flux. It should be also noted that the
energy flux given by (18c) satisfies the boundary condi-
tion of no flux through coastlines [using (17c)], an issue
not considered in previous studies for the pseudomomen-
tum flux. With these requirements in mind, we hope that
future studies can lead to either an improved approxi-
mation or a numerical algorithm for the level-0 energy
flux.

Appendix 3
Similarity between the level-2 energy flux of this study and
the pseudomomentum flux in previous studies
Ripa (1982) has derived a conservation equation for
pseudomomentum (or wave activity) associated with
ageostrophic waves. His equation may be reproduced
using (1a)–(1c) as

∂

∂t∗

(
p∗u∗

c∗2
− q∗2

2β∗

)

︸ ︷︷ ︸
IB pseudomomentum

+∇∗ · 〈〈E∗ − v∗v∗, v∗u∗〉〉︸ ︷︷ ︸
IB flux

= 0,

(27a)

E∗ ≡ 1
2

(
u∗2 + v∗2 + p∗2

c∗2

)
, (27b)

where the prognostic quantity may be referred to as the
impulse-bolus (IB) pseudomomentum (Aiki et al. 2015,
hereafter ATG15) and E∗ is the wave energy. Note that
the IB pseudomomentum given here is the shallow water
version of that given by Eq. (27a) in ATG15. It has been
known that the expression of the flux in (27a) can indi-
cate the direction of the group velocity of different types of
waves, in particular, mid-latitude RWs and IGWs (Hoskins
et al. 1983; Plumb 1986; Haynes 1988). Another nice fea-
ture of the IB pseudomomentum Eq. (27a) is that it does
not contain a singularity at the equator. In order to inves-
tigate the origin of these features, ATG15 have shown in
their Eq. (18a) an identity between the IB pseudomomen-
tum and the classical energy-based (CE) pseudomomen-
tum to read (again, written here for the shallow water
equations)

E∗

(ω∗/k∗)︸ ︷︷ ︸
CE pseudomomentum

= p∗u∗

c∗2
− q∗2

2β∗︸ ︷︷ ︸
IB pseudomomentum

− ∂

∂y∗

(
u∗q∗

2β∗

)
+ ∂

∂x∗

(
v∗q∗

2β∗

)
,

(28a)

which may be derived from (1a)–(1c) of the present study.
Application of a low-pass temporal filter to (27b), and
then, understanding the phase relationship between v∗ =
−q∗

t∗/β
∗ and q∗ yields

E∗
(ω∗/k∗)

= p∗u∗
c∗2

− q∗2

2β∗ − ∂

∂y∗

(
u∗q∗
2β∗

)
. (28b)

Substitution of (28b) to a low-pass time-filtered version of
(28a) yields

∂

∂t∗
E∗+

ω∗

k∗ ∇∗ ·
〈〈
E∗ − v∗v∗, v∗u∗ + ∂

∂t∗

(
u∗q∗
2β∗

) 〉〉
= 0, (29)
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which is a prognostic equation for the wave energy
wherein the zonal component of the flux is proportional
to that in the IB pseudomomentum equation (27a).
It is easy to expect that the expression of the flux in (29)

can indicate the direction of the group velocity of mid-
latitude RWs and IGWs (Hoskins et al. 1983; Plumb 1986;
Haynes 1988). For equatorial waves, here, we investi-
gate the meridional profile of (E∗ − v∗v∗)ω∗/k∗ as shown
by the purple dots in Figs. 2 and 3 for low- and high-
frequency waves, respectively. For low-frequency waves
(Fig. 2), the meridional profile of (E∗ − v∗v∗)ω∗/k∗ (the
purple dots) is almost the same as that of the level-2
energy flux (the blue solid line), showing that the level-
2 energy flux and the IB flux are closely related. For
high-frequency waves (Fig. 3), the meridional profile of
(E∗ − v∗v∗)ω∗/k∗ (the purple dots) is nearly the same as
that of the level-1 energy flux (the orange dashed line),
indicating that the level-2 energy flux is somewhat better
than the IB flux.
In fact, without relying on the level-0 expression, we

have arrived at the level-2 expression of the energy flux by
extending the investigation of ATG15 concerning the alge-
braic structure of the IB flux (to be explained in a future
study). ATG15 have addressed the importance of a wave-
induced scalar quantity and symbolized it as�: it vanishes
for mid-latitude IGWs (i.e., waves with no perturbation
of EPV) and becomes nonzero for mid-latitude RWs (i.e.,
wave with a perturbation of EPV). Here, we suggest that
� = (p∗η∗)y∗/2 is closely linked to (p∗ϕapp∗)y∗/2 in the
present study (η∗ is meridional displacement). This is why
the level-2 expression for the energy flux in the present
study can indicate the direction of the group velocity of
different types of waves, an issue we shall discuss in a
future study.
Note that the IB flux in (27a) has already been used

for the model diagnosis of waves in low-latitude regions
(Randel and Williamson 1990; Brunet and Haynes 1996;
Fukutomi and Yasunari 2002; Wakata and Kitaya 2002;
Kawatani et al. 2010). We suggest that, despite the certain
inaccuracy associated with equatorial waves as compared
with the level-0 expression, the level-2 expression of the
energy flux in the present study will be at least as useful
as the IB flux which has long been used in the atmo-
spheric (and oceanic) literature. For oceanic applications,
the level-2 energy flux brings two new advantages over the
IB flux: (i) the level-2 energy flux satisfies a no-normal-
flux boundary condition at coastlines, and (ii) the wave
energy is a sign-definite quantity while the IB pseudomo-
mentum is not.
Overall, we address the balance of (i) model accessi-

bility, (ii) unified treatment for different types of waves,
(iii) mathematical accuracy, and (iv) boundary condi-
tions at coastlines. With these requirements in mind,
we hope future studies can lead to either an improved

approximation or a numerical algorithm for the level-0
energy flux, wherein the profile of the IB flux will provide
a reference for accuracy because the IB flux has long been
used in previous studies.
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Additional file 1: Movie of the model experiment. See the caption of
Fig. 4 for details. (MP4 2365 kb)
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