151 research outputs found

    Collective excitation spectrum of a disordered Hubbard model

    Full text link
    We study the collective excitation spectrum of a d=3 site-disordered Anderson-Hubbard model at half-filling, via a random-phase approximation (RPA) about broken-symmetry, inhomogeneous unrestricted Hartree-Fock (UHF) ground states. We focus in particular on the density and character of low-frequency collective excitations in the transverse spin channel. In the absence of disorder, these are found to be spin-wave-like for all but very weak interaction strengths, extending down to zero frequency and separated from a Stoner-like band, to which there is a gap. With disorder present, a prominent spin-wave-like band is found to persist over a wide region of the disorder-interaction phase plane in which the mean-field ground state is a disordered antiferromagnet, despite the closure of the UHF single-particle gap. Site resolution of the RPA excitations leads to a microscopic rationalization of the evolution of the spectrum with disorder and interaction strength, and enables the observed localization properties to be interpreted in terms of the fraction of strong local moments and their site-differential distribution.Comment: 25 pages (revtex), 9 postscript figure

    Magnetic susceptibility, exchange interactions and spin-wave spectra in the local spin density approximation

    Get PDF
    Starting from exact expression for the dynamical spin susceptibility in the time-dependent density functional theory a controversial issue about exchange interaction parameters and spin-wave excitation spectra of itinerant electron ferromagnets is reconsidered. It is shown that the original expressions for exchange integrals based on the magnetic force theorem (J. Phys. F14 L125 (1984)) are optimal for the calculations of the magnon spectrum whereas static response function is better described by the ``renormalized'' magnetic force theorem by P. Bruno (Phys. Rev. Lett. 90, 087205 (2003)). This conclusion is confirmed by the {\it ab initio} calculations for Fe and Ni.Comment: 12 pages, 2 figures, submitted to JPC

    Disorder-enhanced delocalization and local-moment quenching in a disordered antiferromagnet

    Full text link
    The interplay of disorder and spin-fluctuation effects in a disordered antiferromagnet is studied. In the weak-disorder regime (W \le U), while the energy gap decreases rapidly with disorder, the sublattice magnetization, including quantum corrections, is found to remain essentially unchanged in the strong correlation limit. Magnon energies and Neel temperature are enhanced by disorder in this limit. A single paradigm of disorder-enhanced delocalization qualitatively accounts for all these weak disorder effects. Vertex corrections and magnon damping, which appear only at order (W/U)^4, are also studied. With increasing disorder a crossover is found at W \sim U, characterized by a rapid decrease in sublattice magnetization due to quenching of local moments, and formation of spin vacancies. The latter suggests a spin-dilution behavior, which is indeed observed in softened magnon modes, lowering of Neel temperature, and enhanced transverse spin fluctuations.Comment: 12 pages, includes 8 postscript figures. To appear in Physical Review B. References adde

    Symmetry breaking in the Hubbard model at weak coupling

    Full text link
    The phase diagram of the Hubbard model is studied at weak coupling in two and three spatial dimensions. It is shown that the Neel temperature and the order parameter in d=3 are smaller than the Hartree-Fock predictions by a factor of q=0.2599. For d=2 we show that the self-consistent (sc) perturbation series bears no relevance to the behavior of the exact solution of the Hubbard model in the symmetry-broken phase. We also investigate an anisotropic model and show that the coupling between planes is essential for the validity of mean-field-type order parameters

    Electrical Sintering of Silver Nanoparticle Ink Studied by In-Situ TEM Probing

    Get PDF
    Metallic nanoparticle inks are used for printed electronics, but to reach acceptable conductivity the structures need to be sintered, usually using a furnace. Recently, sintering by direct resistive heating has been demonstrated. For a microscopic understanding of this Joule heating sintering method, we studied the entire process in real time inside a transmission electron microscope equipped with a movable electrical probe. We found an onset of Joule heating induced sintering and coalescence of nanoparticles at power levels of 0.1–10 mW/m3. In addition, a carbonization of the organic shells that stabilize the nanoparticles were found, with a conductivity of 4 105 Sm−1

    HIV-1 Promotes Renal Tubular Epithelial Cell Protein Synthesis: Role of mTOR Pathway

    Get PDF
    Tubular cell HIV-infection has been reported to manifest in the form of cellular hypertrophy and apoptosis. In the present study, we evaluated the role of mammalian target of rapamycin (mTOR) pathway in the HIV induction of tubular cell protein synthesis. Mouse proximal tubular epithelial cells (MPTECs) were transduced with either gag/pol-deleted NL4-3 (HIV/MPTEC) or empty vector (Vector/MPTEC). HIV/MPTEC showed enhanced DNA synthesis when compared with Vector/MPTECs by BRDU labeling studies. HIV/MPTECs also showed enhanced production of β-laminin and fibronection in addition to increased protein content per cell. In in vivo studies, renal cortical sections from HIV transgenic mice and HIVAN patients showed enhanced tubular cell phosphorylation of mTOR. Analysis of mTOR revealed increased expression of phospho (p)-mTOR in HIV/MPTECs when compared to vector/MPTECs. Further downstream analysis of mTOR pathway revealed enhanced phosphorylation of p70S6 kinase and associated diminished phosphorylation of eEF2 (eukaryotic translation elongation factor 2) in HIV/MPTECs; moreover, HIV/MPTECs displayed enhanced phosphorylation of eIF4B (eukaryotic translation initiation factor 4B) and 4EBP-1 (eukaryotic 4E binding protein). To confirm our hypothesis, we evaluated the effect of rapamycin on HIV-induced tubular cell downstream signaling. Rapamycin not only attenuated phosphorylation of p70S6 kinase and associated down stream signaling in HIV/MPTECs but also inhibited HIV-1 induced tubular cell protein synthesis. These findings suggest that mTOR pathway is activated in HIV-induced enhanced tubular cell protein synthesis and contributes to tubular cell hypertrophy

    Increased Prevalence of Albuminuria in HIV-Infected Adults with Diabetes

    Get PDF
    HIV and type 2 diabetes are known risk factors for albuminuria, but no previous reports have characterized albuminuria in HIV-infected patients with diabetes.We performed a cross-sectional study including 73 HIV-infected adults with type 2 diabetes, 82 HIV-infected non-diabetics, and 61 diabetic control subjects without HIV. Serum creatinine >1.5 mg/dL was exclusionary. Albuminuria was defined as urinary albumin/creatinine ratio >30 mg/g.The prevalence of albuminuria was significantly increased among HIV-infected diabetics (34% vs. 13% of HIV non-diabetic vs. 16% diabetic control, p = 0.005). HIV status and diabetes remained significant predictors of albuminuria after adjusting for age, race, BMI, and blood pressure. Albumin/creatinine ratio correlated significantly with HIV viral load (r = 0.28, p = 0.0005) and HIV-infected subjects with albuminuria had significantly greater cumulative exposure to abacavir (p = 0.01). In an adjusted multivariate regression analysis of HIV-infected subjects, the diagnosis of diabetes (p = 0.003), higher HIV viral load (p = 0.03) and cumulative exposure to abacavir (p = 0.0009) were significant independent predictors of albuminuria.HIV and diabetes appear to have additive effects on albuminuria which is also independently associated with increased exposure to abacavir and HIV viral load. Future research on the persistence, progression and management of albuminuria in this unique at-risk population is needed

    Recent advances in understanding hypertension development in sub-Saharan Africa

    Get PDF
    Consistent reports indicate that hypertension is a particularly common finding in black populations. Hypertension occurs at younger ages and is often more severe in terms of blood pressure levels and organ damage than in whites, resulting in a higher incidence of cardiovascular disease and mortality. This review provides an outline of recent advances in the pathophysiological understanding of blood pressure elevation and the consequences thereof in black populations in Africa. This is set against the backdrop of populations undergoing demanding and rapid demographic transition, where infection with the Human Immunodeficiency Virus predominates, and where under and over-nutrition coexist. Collectively, recent findings from Africa illustrate an increased lifetime risk to hypertension from foetal life onwards. From young ages black populations display early endothelial dysfunction, increased vascular tone and reactivity, microvascular structural adaptions, as well as increased aortic stiffness resulting in elevated central and brachial blood pressures during the day and night, when compared to whites. Together with knowledge on the contributions of sympathetic activation and abnormal renal sodium handling, these pathophysiological adaptations result in subclinical and clinical organ damage at younger ages. This overall enhanced understanding on the determinants of blood pressure elevation in blacks encourages (a) novel approaches to assess and manage hypertension in Africa better, (b) further scientific discovery to develop more effective prevention and treatment strategies, and (c) policymakers and health advocates to collectively contribute in creating health-promoting environments in Africa
    • …
    corecore