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A bstract

Starting from exact expression for the dynamical spin susceptibility in the time-dependent den­

sity functional theory a controversial issue about exchange interaction parameters and spin-wave 

excitation spectra of itinerant electron ferromagnets is reconsidered. It is shown tha t the origi­

nal expressions for exchange integrals based on the magnetic force theorem (J. Phys. F 14 L125 

(1984)) are optimal for the calculations of the magnon spectrum whereas static response function 

is better described by the “renormalized” magnetic force theorem by P. Bruno (Phys. Rev. Lett. 

90 087205 (2003)). This conclusion is confirmed by the ab initio calculations for Fe and Ni.
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An efficient scheme for the first-principle calculations of exchange interaction param e­

ters in magnets based on a so-called “magnetic force theorem” (MFT) [1, 2] in the density 

functional theory is frequently used for analysis of exchange param eters for different classes 

of magnetic materials such as dilute magnetic semiconductors [3], molecular magnets [4], 

colossal magnetoresistance perovskites [5], transition metal alloys [6], hard magnetic ma­

terials such as PtC o [7] and many others. Recently this method was generalized to take 

into account the correlation effects and successfully used for the quantitative estimation 

of exchange interactions in Fe and Ni [8, 9]. At the same time the formal status of this 

approach is still not well-defined since a general mapping of formally rigorous spin density 

functional to an effective classical Heisenberg Hamiltonian can be done only approximately. 

It was noticed already in the first work on the M FT [1] th a t only the expression for spin 

wave stiffness constant D is reliable. In terms of the diagrammatic many-body approach 

it means tha t the exchange integrals (Jij ) in general should contain vertex corrections [10] 

which are neglected in the simple expression [1, 2] (see Ref. 9). At the same time, using a 

general expression for spin-wave stiffness due to Hertz and Edwards [11] one can prove tha t 

the vertex corrections to D are cancelled for any local approximation for the self-energy (or, 

in the density functional method, for the local exchange correlation potential) [12]. Recently 

P. Bruno has suggested [13] corrections to the M FT and consequently to the expressions for 

Jij (see also Ref. 14). It is im portant to note tha t, first, the new expression for D coincides 

with the old one and, second, th a t these corrections for the case of itinerant electron mag­

nets are formally small in adiabatic param eter n =  w /A  where w  is a characteristic magnon 

frequency and A is the Stoner spin splitting. At the same time, mapping of the local spin 

density approximation (LSDA) onto the classical Heisenberg model itself is valid only in the 

adiabatic approximation n ^  0 [1, 2, 16]. If we are interested in higher order effects in the n 

it might be needed different effective exchange parameters for different physical properties. 

We will show on few examples th a t this is exactly the case. It turns out th a t the spin-wave 

excitation spectrum should be calculated in terms of “old” exchange integrals [1, 2] whereas 

for static properties “new” exchange integrals [13, 14] are more appropriate.

The most reliable way to consider spin-wave properties of itinerant electron magnets 

in the framework of the spin density functional theory is the use of frequency dependent 

magnetic susceptibility [17, 18, 19]. One should start from the time-dependent density 

functional theory in the adiabatic approximation (ADA-TDDFT) [20, 21]. We proceed with
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the Schrodinger-like equation within the self-consistent ADA-TDDFT potential

■9lp „  I
l T t  =  H i '

H  = - V 2 +  V'(r) -  i ( B „ ( r )  +  B,„(r))<7 (1)

(Slater’s units are used here) where V (r) is an effective potential, B ext(r) and B xc(r) are 

external magnetic field acting on spin and exchange-correlation field, respectively. The 

adiabatic approximation means th a t the functional dependences of exchange-correlation po­

tential and field on the charge and spin density are supposed to be the same as in the 

stationary case. In LSDA one has

V(r) = Vext(r) +  [  +  ^ - [ n £ xc]
J |r  — r  | on

m  d
B xc — 2 — [wSxc] (2)m  d m

where n and m  are charge and spin density, £xc is the exchange-correlation energy per 

particle, Vext is the external potential, i.e. the Coulomb potential of nuclei. To calculate 

the spin susceptibility we will assume B ext(r) ^  0. It leads to the effective complete “non­

equilibrium” field
r Da

SBZ, = 6B?xt +  j ^ S m ” (3)

where afl  are Cartesian indices and the sum over repeated indices is assumed.

By definition of the exact non-local frequency-dependent spin susceptibility X“5 the vari­

ation of the spin density is equal to

Sma =  r 5 iDfxt (4)

Operator product is defined here as usual:

(X ¥ ) ( r ) = f  d r'x ( r , r/)^ (r/) (5)

On other hand, it was shown in Ref. 20 th a t in the time-dependent density functional theory 

we should have exactly

Sma =  xa5 iBfot (6)

where Xo5 is the susceptibility of an auxiliary system of free Kohn-Sham particles. It has 

been dem onstrated originally for the charge excitations but the generalization of TD D FT
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for the spin-polarized case [21], shows th a t the equation (6) holds also for spin excitations. 

Comparing two expressions for 5ma we have the following equation

r ” =  x f + ( 7 )

This “RPA-like” equation is formally exact in ADA-TDDFT. For the local spin density 

approximation (Eq.(2)) one has

5Byc B xc (  m Ym s \  m Ym s d B xc
J  =  ( --------- 2 ) ^ 2 F) ( )om° m  \  m 2 )  m 2 d m

The first term  in E q.(8) is purely transverse and the second one is purely longitudinal with 

respect to the local m agnetization vector. In collinear magnetic structures there are no 

coupling between the longitudinal and transverse components and for the transverse spin 

susceptibility we have the following equation:

X+ - ( r, r ' ) =  x+- ( r , r ' ,u )  + j  dr"x+- (r, r " , u )Ixc(r")x +-(r" , r ' , ^ ) (9)

where

h o  =  —  (10)m
is an exchange-correlation “Hund’s rule” interaction, the magnetic and charge electron den­

sity being defined as usual

_  (r) 12m  = ^ 2  a f ^° 1 (r) I2

n  =  ^  f^a 1 (r) |2 (11)
^a

The bare susceptibility has the following form:

X t ~ ( r  , t ' , u ) =  ^ t ( r ) ^ | ( r ) C | ( r /)V;iUT(r / ) ( 1 2 )
w — I

where and £^a are eigenstates and eigenvalues for the Kohn-Sham quasiparticles

Ho — O" 'Ipfur ¡¡a

Ho =  —V 2 +  V (r) (13)

and =  f  (e^a) is the Fermi distribution function.

Although the longitudinal spin susceptibility is not necessary to consider the exchange 

interactions it is instructive to write also an explicit expression for it. The derivation is

4



similar to those presented above with a small complication, since we have to consider sep­

arately the response of spin-up and spin-down electrons. Suppose we have an external 

perturbation 8V°xt. It leads to the change of the exchange correlation potential V£c =  9^ xĉ  

(na = \  (n +  crm)), namely,

8V£C =  Uaa, 5na, , (14)
fT _  d 2 (n e xc)
V  o  o '  o nuna onaf

which gives the to tal perturbation 8Vt°t =  S V ^  +  SVxC. One can introduce the response 

functions K aa' by the formal expression

S , f  =  K S V f x t .  (15)

Then the longitudinal spin susceptibility can be expressed in terms of the K -functions as

x zz = ^ ( K ^  + K 11 -  K n  -  K 1̂ ) (16) 

At the same time, according to the general scheme of TDDFT, we have

s n  =  x „  s v ^  (17)

where

(r, r ') =  ^  (r )Vu (r )Vv (r')VC (r') (18)
— u  — Sua +  £va

Comparing these two expressions for Sna one obtains

K TT =  X T +  X TUTTK TT +  X TUTlK IT

K 11 =  X | +  X |U UK 11 +  X |U iT K TI

K TI =  X TUTlK 11 +  X tUt t K  ti

K 1T =  X , U „ K TT +  X , U n K IT (19)

Similar expressions have been obtained in the RPA for the Hubbard model in Ref 22. A 

coupling between the longitudinal spin and density degrees of freedom is im portant also for 

the electronic structure calculations which take into account correlation effects [9, 23].

Let us continue the derivation of useful expression for the transverse susceptibility 

(Eq.(9)). In order to consider the case of small u  it is useful to make some identical transfor­

mations of the kernel (12) similar to the Hubbard model consideration [24]. Using E q.(13)
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one can find

BxcH’M ' h  =  (£vj — £,.f) A ^ v t  +  V«>„T V4,;d  — H i V i ' n f )  (20)

Substituting Eq.(20) into Eq.(12) we obtain

(X+- Bxc)(r, r ' , u) =  m (r)S(r — r ' ) — u x + - (r, r ' , u ) (21)

where we used the completeness condition

^  4 *iv (r)4 . a (r ' ) =  s (r  — r ' ) (22)
i

Substituting Eq.(21) into E q.(12) we can transform  the la tter expression to the following 

form
---I-- ---I--, ----I--B xc .̂J--- *̂_|-- -- --1 ---- A *̂_|-- /no\
x = Xo + Xo — r  = xo +ic - ̂ Xo — x + —r  23m  m m

or, equivalently,
—X =  m u -  (xS+ - ) - 1 A (24)

-1

where

A(r , r ;, u )  =  ^  V£T(r > M r )V  f e T i r O V ^ i r ' )  - ^ ( r O V ^ t i r ' ) ]  (25)
— u  — £uf +  £v I.V *

Using Eqs.(12),(24) one has finally

X+-  =  ( m  +  A) ( u  — I x J )  (26)

which is exactly equivalent to Eq.(9) but much more suitable for investigation of the magnon 

spectrum. Spin wave excitations can be separated from the Stoner continuum (e.g., para- 

magnons) only in the adiabatic approximation, which means the replacement A(r, r ' , u) by 

A(r, r ' , 0) in Eq.(26). Otherwise one should just find the poles of the to tal susceptibility, and 

the whole concept of “exchange interactions” is not uniquely defined. Nevertheless, formally 

we can introduce the effective exchange interactions via the quantities

Q(r, r ' ,u )  =  I xcA(r,  r ' , u ). (27)

Substituting Eq.(20) into Eq.(26) we get

A(r , r ;, to) = [Bxc{^) — evy +  e ^ \  (28)
— u  — £uf +  £v I
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Therefore

i l ( r , r', u)  = — J ( r , r', u)  +  Ixc(r) ^ ^  -  eH ) 'tp*} (r)VVj ( r ) C |  (r 0 Vv? (r 0
m (r) ^  u — e .f +  £vi 1  1

(29)

where an expression for frequency dependent exchange interactions has the following form

^*T(r )Ba:c(r )^ I/i(r)^*i (r/)Ba.c(r/)^ /iT(r/) (30)
4 7 7  u  — £i f  +  £v|

The later coincides with the exchange integrals [1, 2, 25] if we neglect the u  - dependence. 

Since B xc ~  m  we have J  ~  m 2 and the expression (29) vanishes in non-magnetic case, as 

it should be. Using the identity (22) one can show th a t

4
Q(r, r  , 0) =  — r , 0) — B xc(r)8(r -  r  ) (31)

m (r)

Note th a t for u  =  0 we have exactly:

-IxcA ^

and the static susceptibility X+-  (0) can be represented in the form

X+- (0) =  m  ( f i — B - 1)  (32)

which is equivalent to the result of Ref. 13

B =  (1 — B-c1fi) -1 (33)

for the renormalized exchange interaction if one define them  in terms of inverse static sus­

ceptibility [14, 15].

As it was stressed above for a generic case of an itinerant electron magnet it is impossible 

to introduce the effective exchange integrals and one should to work with the generalized spin 

susceptibility. Any definition of the exchange integrals assume the adiabatic approximation 

somewhere. For the spin-wave spectrum which is determined by the pole of the transverse 

susceptibility it is natural to formulate “exchange concept” as neglecting of the u-dependence 

in . Then, in virtue of Eq.(26) the magnon frequencies are just eigenstates of the operator

(0) which exactly corresponds to the expression from the “old” M FT exchange interactions 

[1, 2]. Note th a t for the long-wavelength limit q  ^  0 this result turns out to be exact which 

proves the above statem ent about the stiffness constant D: in the framework of the local
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approximation it is rigorous. Corrections to D  from a nonlocality of the exchange-correlation 

potential have been estim ated recently [26] for Fe and Ni and turned out to be small.

At the same time, if we are interested in the computations of the thermodynamic prop­

erties such as the Curie tem perature TC the renormalized exchange integrals can really give 

more accurate results. One can introduce for the itinerant electron magnets a magnon-like 

operators

6q =  — 5 - ,  b{ = - — S+ (34)—  <?- ftt =  _ L  
q ’ q V m T

where m 0 =  2S  is the ground-state m agnetization and write for the tem perature dependence 

of the magnetization the Bloch-like expression

to (T) = m 0 ~ Y ^  <&q&q> =  m o + —  I  du) Im f  /t ) ,UJ\  ^q m 0 J exp ( u / 1 ) — 1

(a similar approximation for the Hubbard model has been proposed in Ref. 24). If we 

will use the classical-spin approximation usually exploited for first-principle estimations of 

the Curie tem perature one should replace the Planck function in Eq.(35) by its classical 

limit T / u  which immediately gives (taking into account the Kramers-Kronig relations) the 

following expression for the Curie tem perature

which is identical to the expression from Ref. 13 in terms of the renormalized exchange 

interactions. Note, however, th a t the quantum  character of the spin (which can be taken 

into account only beyond the LSDA) is probably very essential for proper description of high- 

tem perature magnetism of transition metals [27] which makes a problem of an improvement 

of classical estimations of TC less im portant.

In order to test different approximations to the exchange interactions we calculated spin- 

wave spectrum  for iron and nickel using the LMTO-TB m ethod [28]. The orthogonal LMTO 

representation was used and the calculation scheme was the following.

The m atrix of Green function in s,p,d-basis set is equal to

Ga(k, Un) — [i^n  +  ^  — H LDA(k)] (37)
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where ß  is the chemical potential, u n are M atsubara frequencies and H LDA is the orthogonal 

LSDA Hamiltonian. We use the following approximation for the m atrix Ixc:

Vxc — m Ixc — Ĥ lda (0) H LDA(0) (38)

The m atrix of the LDA-susceptibility has been calculated using the fast Fourier transform 

technique with k — (k ,u n)

(q) =  — ^  G T(k) * Gl (k +  q) (39)
k

The Fourier transforms of the “bare” exchange interactions J  (0) (30) is defined as

^(q) =  ^VxcXo~( =  o )i4c (40)

whereas for the “renormalized” exchange integrals [13, 14] one has

J(0) — J(q ) =  ~^TrL m ( x + (q,w =  0)) 1m  

= \ r r L

The magnon spectrum is determined via the exchange integrals as

4
W(q) =  M  [J(0) “  J(q)] ’ (42)

where M  — T r Lm  is the to tal magnetic moment. One can see from Fig.1 and Fig.2 th a t the 

LDA “bare” exchange param eter better describe the spin-wave spectrum in Fe and Ni, while 

thermodynamics (e.g. the Curie tem perature - see Table. I) are more reasonable with the 

exact static LDA-exchange (which is the “RPA”-like expression). This confirms a general 

consideration presented above.
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FIG. 1: The spin-wave spectrum for ferromagnetic iron in the bare exchange (Eq.(40)) and renor­
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FIG. 2: The spin-wave spectrum for ferromagnetic nickel in the bare exchange (Eq.(40)) and 

renormalized exchange (Eq.(41)) scheme in comparison with experimental data (from Ref.[29]).
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