644 research outputs found

    Synthesis of conductive carbon aerogels decorated with β-tricalcium phosphate nanocrystallites

    Get PDF
    There has been substantial interest in research aimed at conductive carbon-based supports since the discovery that the electrical stimulus can have dramatic effect on cell behavior. Among these carbon-aerogels decorated with biocompatible polymers were suggested as future materials for tissue engineering. However, high reaction temperatures required for the synthesis of the aerogels tend to impair the stability of the polymeric networks. Herein, we report a synthetic route towards carbon-aerogel scaffolds decorated with biocompatible ceramic nanoparticles of tricalcium phosphate. The composites can be prepared at temperature as high as 1100 °C without significant effect on the morphology of the composite which is comparable with the original aerogel framework. Although the conductivity of the composites tends to decrease with the increasing ceramic content the measured conductivity values are similar to those previously reported on polymer-functionalized carbon-aerogels. The cell culture study revealed that the developed constructs support cell proliferation and provide good cell attachment suggesting them as potentially good candidates for tissue-engineering applications

    Lepton polarization asymmetry in radiative dileptonic B-meson decays in MSSM

    Get PDF
    In this paper we study the polarization asymmetries of the final state lepton in the radiative dileptonic decay of B meson (\bsllg) in the framework of Minimal Supersymmetric Standard Model (MSSM) and various other unified models within the framework of MSSM e.g. mSUGRA, SUGRA (where condition of universality of scalar masses is relaxed) etc. Lepton polarization, in addition of having a longitudinal component (\pl), can have two other components, \pt and \pn, lying in and perpendicular to the decay plane, which are proportional to \ml and hence are significant for final state being μ+ μ\mu^+ ~ \mu^- or τ+τ˜\tau^+ \~\tau^-. We analyse the dependence of these polarization asymmetries on the parameters of the various models.Comment: typos corrected to match with published versio

    On embodied memetic evolution and the emergence of behavioural traditions in Robots

    Get PDF
    This paper describes ideas and initial experiments in embodied imitation using e-puck robots, developed as part of a project whose aim is to demonstrate the emergence of artificial culture in collective robot systems. Imitated behaviours (memes) will undergo variation because of the noise and heterogeneities of the robots and their sensors. Robots can select which memes to enact, and-because we have a multi-robot collective-memes are able to undergo multiple cycles of imitation, with inherited characteristics. We thus have the three evolutionary operators: variation, selection and inheritance, and-as we describe in this paper-experimental trials show that we are able to demonstrate embodied movement-meme evolution. © 2011 Springer-Verlag

    Analysis of Various Polarization Asymmetries In The Inclusive bs+b\to s \ell^+ \ell^- Decay In The Fourth-Generation Standard Model

    Get PDF
    In this study a systematical analysis of various polarization asymmetries in inclusive b \rar s \ell^+ \ell^- decay in the standard model (SM) with four generation of quarks is carried out. We found that the various asymmetries are sensitive to the new mixing and quark masses for both of the μ\mu and τ\tau channels. Sizeable deviations from the SM values are obtained. Hence, b \rar s \ell^+ \ell^- decay is a valuable tool for searching physics beyond the SM, especially in the indirect searches for the fourth-generation of quarks (t,b)t', b').Comment: 19 Pages, 10 Figures, 3 Table

    A novel form of recessive limb girdle muscular dystrophy with mental retardation and abnormal expression of alpha-dystroglycan

    Get PDF
    Cataloged from PDF version of article.The limb girdle muscular dystrophies are a heterogeneous group of conditions characterized by proximal muscle weakness and disease onset ranging from infancy to adulthood. We report here eight patients from seven unrelated families affected by a novel and relatively mild form of autosomal recessive limb girdle muscular dystrophy (LGMD2) with onset in the first decade of life and characterized by severe mental retardation but normal brain imaging. Immunocytochemical studies revealed a significant selective reduction of α-dystroglycan expression in the muscle biopsies. Linkage analysis excluded known loci for both limb girdle muscular dystrophy and congenital muscular dystrophies in the consanguineous families. We consider that this represents a novel form of muscular dystrophy with associated brain involvement. The biochemical studies suggest that it may belong to the growing number of muscular dystrophies with abnormal expression of α-dystroglycan. © 2003 Published by Elsevier B.V

    Structure-based design and synthesis of antiparasitic pyrrolopyrimidines targeting pteridine reductase 1

    Get PDF
    The treatment of Human African Trypanosomiasis remains a major unmet health need in sub-Saharan Africa. Approaches involving new molecular targets are important and pteridine reductase 1 (PTR1), an enzyme that reduces dihydrobiopterin in Trypanosoma spp. has been identified as a candidate target and it has been shown previously that substituted pyrrolo[2,3-d]pyrimidines are inhibitors of PTR1 from T. brucei (J. Med. Chem. 2010, 53, 221-229). In this study, 61 new pyrrolo[2,3-d]pyrimidines have been prepared, designed with input from new crystal structures of 23 of these compounds complexed with PTR1, and evaluated in screens for enzyme inhibitory activity against PTR1 and in vitro antitrypanosomal activity. 8 compounds were sufficiently active in both screens to take forward to in vivo evaluation. Thus although evidence for trypanocidal activity in a stage I disease model in mice was obtained, the compounds were too toxic to mice for further development

    New Physics in b -> s mu+ mu-: CP-Conserving Observables

    Full text link
    We perform a comprehensive study of the impact of new-physics operators with different Lorentz structures on decays involving the b -> s mu+ mu- transition. We examine the effects of new vector-axial vector (VA), scalar-pseudoscalar (SP) and tensor (T) interactions on the differential branching ratios and forward-backward asymmetries (A_{FB}'s) of Bsbar -> mu+ mu-, Bdbar -> Xs mu+ mu-, Bsbar -> mu+ mu- gamma, Bdbar -> Kbar mu+ mu-, and Bdbar -> K* mu+ mu-, taking the new-physics couplings to be real. In Bdbar -> K* mu+ mu-, we further explore the polarization fraction f_L, the angular asymmetry A_T^{(2)}, and the longitudinal-transverse asymmetry A_{LT}. We identify the Lorentz structures that would significantly impact these observables, providing analytical arguments in terms of the contributions from the individual operators and their interference terms. In particular, we show that while the new VA operators can significantly enhance most of the asymmetries beyond the Standard Model predictions, the SP and T operators can do this only for A_{FB} in Bdbar -> Kbar mu+ mu-.Comment: 54 pages, JHEP format, 45 figures (included). 5/6/2013: typos in K* mu mu angular coefficients corrected, typos in Eq. (D.12) corrected, added a missing term in I3LT in Eq. (D.16). Numerical analysis unchange

    Strategies for Multiplexed Electrochemical Sensor Development

    Get PDF
    Detection of multiple biomarkers for disease diagnosis or treatment monitoring has received a lot of attention due to their potential impact on clinical decision making. Electrochemical biosensors have become one of the preferred detection approaches, due to the simplicity of the accompanying instrumentation. This chapter will explore how electrochemical sensors can be utilized for detection of multiple analytes by integration of sensors into microfluidic microsystems. Some key fabrication technologies for such devices will be presented utilizing polymer microfabrication, paper-based approaches, and the use of printed circuit boards. Next, the use of electrode arrays will be presented along with some commercial platforms, outlining plausible paths towards a successful electrochemical multiplexed sensor. Novel approaches based on microbeads and various labels will then be introduced along with various strategies and technologies utilized to achieve ultrasensitive multiplexed detection

    A Simple Approach to Fourth Generation Effects in BXs+B\to X_s \ell^+ \ell^- Decay

    Full text link
    In a scenario in which fourth generation fermions exist, we study effects of new physics on the differential decay width, forward-backward asymmetry AFBA_{\text{FB}} and integrated branching ratio for BXs+B\to X_s \ell^+ \ell^- decay with (=e,μ)(\ell=e,\mu). Prediction of the new physics on the mentioned quantities essentially differs from the Standard Model results, in certain regions of the parameter space, enhancement of new physics on the above mentioned physical quantities can yield values as large as two times of the SM predictions, whence present limits of experimental measurements of branching ratio is spanned, contraints of the new physics can be extracted. For the fourth generation CKM factor VtbVtsV_{t^\prime b}^\ast V_{t^\prime s} we use ±102\pm 10^{-2} and ±103\pm 10^{-3} ranges, take into consideration the possibility of a complex phase where it may bring sizable contributions, obtained no significant dependency on the imaginary part of the new CKM factor. For the above mentioned quantities with a new family, deviations from the SM are promising, can be used as a probe of new physics.Comment: 9 pages aps forma

    Comparative assessment of gasification based coal power plants with various CO2 capture technologies producing electricity and hydrogen

    Get PDF
    Seven different types of gasification-based coal conversion processes for producing mainly electricity and in some cases hydrogen (H2), with and without carbon dioxide (CO2) capture, were compared on a consistent basis through simulation studies. The flowsheet for each process was developed in a chemical process simulation tool “Aspen Plus”. The pressure swing adsorption (PSA), physical absorption (Selexol), and chemical looping combustion (CLC) technologies were separately analyzed for processes with CO2 capture. The performances of the above three capture technologies were compared with respect to energetic and exergetic efficiencies, and the level of CO2 emission. The effect of air separation unit (ASU) and gas turbine (GT) integration on the power output of all the CO2 capture cases is assessed. Sensitivity analysis was carried out for the CLC process (electricity-only case) to examine the effect of temperature and water-cooling of the air reactor on the overall efficiency of the process. The results show that, when only electricity production in considered, the case using CLC technology has an electrical efficiency 1.3% and 2.3% higher than the PSA and Selexol based cases, respectively. The CLC based process achieves an overall CO2 capture efficiency of 99.9% in contrast to 89.9% for PSA and 93.5% for Selexol based processes. The overall efficiency of the CLC case for combined electricity and H2 production is marginally higher (by 0.3%) than Selexol and lower (by 0.6%) than PSA cases. The integration between the ASU and GT units benefits all three technologies in terms of electrical efficiency. Furthermore, our results suggest that it is favorable to operate the air reactor of the CLC process at higher temperatures with excess air supply in order to achieve higher power efficiency
    corecore