834 research outputs found

    Mechanical Properties in Relation to Selected Wood Characteristics of Black Spruce

    Get PDF
    The relation between ring width, ring density, microfibril angle, and bending properties was analyzed at 2.4-m height on twelve 80-year-old black spruce trees. The moduli of elasticity and rupture were measured in the southernmost radial direction on extracted specimens of size 10 x 10 x 150 mm3 from pith to bark. Ring density and ring width were measured by X-ray densitometry, and microfibril angle was measured by the Silviscan technology. The impact of these three traits on the moduli of elasticity and rupture was evaluated by explicitly separating the radial variation from the variation among trees using a mixed model analysis. The results obtained show first that the modulus of elasticity is negatively correlated to microfibril angle. This result supports the assumption that the relation between modulus of elasticity and microfibril angle is not dependent on radial growth rate. Secondly, ring density has a lower contribution in predicting the modulus of elasticity than the modulus of rupture. In both cases, ring width was not a significant factor of variation of the moduli of elasticity and rupture

    Simultaneous estimation of attenuation and structure parameters of aggregated red blood cells from backscatter measurements

    Full text link
    The analysis of the ultrasonic frequency-dependent backscatter coefficient of aggregating red blood cells reveals information about blood structural properties. The difficulty to apply this technique in vivo is due to the frequency-dependent attenuation caused by intervening tissue layers that distorts the spectral content of backscattering properties from blood microstructures. An optimization method is proposed to simultaneously estimate tissue attenuation and blood structure factor. In an in vitro experiment, the method gave satisfactory estimates with relative errors below 22% for attenuations between 0.101 and 0.317 dB/cm/MHz, signal-to-noise ratios>28 dB and kR<2.7 (k being the wave number and R the aggregate radius)

    Testing and Validation of the Dynamic Inertia Measurement Method

    Get PDF
    The Dynamic Inertia Measurement (DIM) method uses a ground vibration test setup to determine the mass properties of an object using information from frequency response functions. Most conventional mass properties testing involves using spin tables or pendulum-based swing tests, which for large aerospace vehicles becomes increasingly difficult and time-consuming, and therefore expensive, to perform. The DIM method has been validated on small test articles but has not been successfully proven on large aerospace vehicles. In response, the National Aeronautics and Space Administration Armstrong Flight Research Center (Edwards, California) conducted mass properties testing on an "iron bird" test article that is comparable in mass and scale to a fighter-type aircraft. The simple two-I-beam design of the "iron bird" was selected to ensure accurate analytical mass properties. Traditional swing testing was also performed to compare the level of effort, amount of resources, and quality of data with the DIM method. The DIM test showed favorable results for the center of gravity and moments of inertia; however, the products of inertia showed disagreement with analytical predictions

    Experimental Validation of the Dynamic Inertia Measurement Method to Find the Mass Properties of an Iron Bird Test Article

    Get PDF
    The mass properties of an aerospace vehicle are required by multiple disciplines in the analysis and prediction of flight behavior. Pendulum oscillation methods have been developed and employed for almost a century as a means to measure mass properties. However, these oscillation methods are costly, time consuming, and risky. The NASA Armstrong Flight Research Center has been investigating the Dynamic Inertia Measurement, or DIM method as a possible alternative to oscillation methods. The DIM method uses ground test techniques that are already applied to aerospace vehicles when conducting modal surveys. Ground vibration tests would require minimal additional instrumentation and time to apply the DIM method. The DIM method has been validated on smaller test articles, but has not yet been fully proven on large aerospace vehicles

    Low inbreeding and high pollen dispersal distances in populations of two Amazonian Forest tree species.

    Get PDF
    Made available in DSpace on 2018-06-07T01:03:50Z (GMT). No. of bitstreams: 1 ID292081.pdf: 197147 bytes, checksum: c741c2bf54ad5ef7cf716c2906330c89 (MD5) Previous issue date: 2008-02-25bitstream/item/178263/1/ID-29208-1.pd

    Nanoscale structuring of tungsten tip yields most coherent electron point-source

    Full text link
    This report demonstrates the most spatially-coherent electron source ever reported. A coherence angle of 14.3 +/- 0.5 degrees was measured, indicating a virtual source size of 1.7 +/-0.6 Angstrom using an extraction voltage of 89.5 V. The nanotips under study were crafted using a spatially-confined, field-assisted nitrogen etch which removes material from the periphery of the tip apex resulting in a sharp, tungsten-nitride stabilized, high-aspect ratio source. The coherence properties are deduced from holographic measurements in a low-energy electron point source microscope with a carbon nanotube bundle as sample. Using the virtual source size and emission current the brightness normalized to 100 kV is found to be 7.9x10^8 A/sr cm^2

    PTPN22 is a critical regulator of Fcg receptor 1mediated neutrophil activation

    Get PDF
    Neutrophils act as a first line of defense against bacterial and fungal infections, but they are also important effectors of acute and chronic inflammation. Genome-wide association studies have established that the gene encoding the protein tyrosine phosphatase nonreceptor 22 (PTPN22) makes an important contribution to susceptibility to autoimmune disease, notably rheumatoid arthritis. Although PTPN22 is most highly expressed in neutrophils, its function in these cells remains poorly characterized. We show in this article that neutrophil effector functions, including adhesion, production of reactive oxygen species, and degranulation induced by immobilized immune complexes, were reduced in Ptpn22(−/−) neutrophils. Tyrosine phosphorylation of Lyn and Syk was altered in Ptpn22(−/−) neutrophils. On stimulation with immobilized immune complexes, Ptpn22(−/−) neutrophils manifested reduced activation of key signaling intermediates. Ptpn22(−/−) mice were protected from immune complex–mediated arthritis, induced by the transfer of arthritogenic serum. In contrast, in vivo neutrophil recruitment following thioglycollate-induced peritonitis and in vitro chemotaxis were not affected by lack of PTPN22. Our data suggest an important role for PTPN22-dependent dephosphorylation events, which are required to enable full FcγR-induced activation, pointing to an important role for this molecule in neutrophil function

    Low Energy Electron Point Projection Microscopy of Suspended Graphene, the Ultimate "Microscope Slide"

    Full text link
    Point Projection Microscopy (PPM) is used to image suspended graphene using low-energy electrons (100-200eV). Because of the low energies used, the graphene is neither damaged or contaminated by the electron beam. The transparency of graphene is measured to be 74%, equivalent to electron transmission through a sheet as thick as twice the covalent radius of sp^2-bonded carbon. Also observed is rippling in the structure of the suspended graphene, with a wavelength of approximately 26 nm. The interference of the electron beam due to the diffraction off the edge of a graphene knife edge is observed and used to calculate a virtual source size of 4.7 +/- 0.6 Angstroms for the electron emitter. It is demonstrated that graphene can be used as both anode and substrate in PPM in order to avoid distortions due to strong field gradients around nano-scale objects. Graphene can be used to image objects suspended on the sheet using PPM, and in the future, electron holography

    The role of GRIP1 and ephrin B3 in blood pressure control and vascular smooth muscle cell contractility

    Get PDF
    This work was supported by grants from the Canadian Institutes of Health Research to J.W. (MOP57697, MOP69089 and MOP 123389), H.L. (MOP97829), and G.C. (CMI72323). It was also financed by grants from the Natural Sciences and Engineering Research Council of Canada (203906-2012), and the J.-Louis Levesque Foundation to J.W. This study was also made possible by a group grant from the National Sciences Foundation of China (#81361120264) to J.S., S.H. T.W. and J.W. The funders provided support in the form of salaries for authors [Y.W.; Z.W.; H.L.; J.P.; J.R.], and experimental costs, but did not have any additional role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript. The specific roles of these authors are articulated in the “author contributions”. The authors thank Regeneron Pharmaceuticals for generously providing Efnb3 KO mice. The authors thank all the authors of the International Consortium for Blood Pressure Genome-Wide Association Studies for allow us to mine the study dataset

    New methodology for specific inhalation challenges with occupational agents

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Inhalation challenges are used for diagnosing occupational asthma (OA). The initial methodology consisted of a "realistic" exposure without monitoring nor controlling exposure. Our aim was to design an equipment, called the GenaSIC, that allows the generation of various agents regardless of the formulation and to assess the feasibility of its use in patients investigated for OA.</p> <p>Results</p> <p>GenaSIC can generate lactose, flour, malt, isocyanates, formaldehyde and N-butyl acetate with precise and fairly stable concentrations. Using N-butyl-acetate as a control agent and real time measurement, we show that normal breathing has a negligible effect on the concentration. We exposed forty-four different subjects to a control agent and/or to a suspected occupational agent. Nineteen of the subjects were only exposed to N-butyl acetate as a control agent without experiencing any significant irritant effect (no significant changes in spirometry thereafter). Eight subjects who were exposed to both N-butyl acetate and formaldehyde did not show significant reactions. Seven subjects were exposed to dry particles (flour in six instances, malt in the other) and five showed immediate asthmatic reactions which changes in FEV1 from 20% to a maximum of 28%. Finally, ten subjects were exposed to isocyanates, four of whom showed a positive reaction, including one subject with immediate maximum changes in FEV1 of 22%.</p> <p>Conclusion</p> <p>GenaSIC offers the possibility of reliable and safe exposures to dry particles, formaldehyde and isocyanates in the investigation of OA.</p
    corecore