823 research outputs found

    Intelligent management of on-street parking provision for the autonomous vehicles era

    Get PDF
    The increasing degree of connectivity between vehicles and infrastructure, and the impending deployment of autonomous vehicles (AV) in urban streets, presents unique opportunities and challenges regarding the on-street parking provision for AVs. This study develops a novel simulation-optimisation approach for intelligent curbside management, based on a metaheuristic technique. The hybrid method balances curb lanes for driving or parking, aiming to minimise the average traffic delay. The model is tested using an idealised grid layout with a range of flow rates and parking policies. Results demonstrate delay decreased by 9%-27% from the benchmark case. Additionally, the traffic delay distribution shows the trade-offs between expanding road capacity and minimising traffic demand through curb management, indicating the interplay between curb parking and traffic management in the AV era

    The Burst-Like Behavior of Aseismic Slip on a Rough Fault: The Creeping Section of the Haiyuan Fault, China

    Get PDF
    Recent observations suggesting the influence of creep on earthquakes nucleation and arrest are strong incentives to investigate the physical mechanisms controlling how active faults slip. We focus here on deriving generic characteristics of shallow creep along the Haiyuan fault, a major strike‐slip fault in China, by investigating the relationship between fault slip and geometry. We use optical images and time series of Synthetic Aperture Radar data to map the surface fault trace and the spatiotemporal distribution of surface slip along the creeping section of the Haiyuan fault. The fault trace roughness shows a power‐law behavior similar to that of the aseismic slip distribution, with a 0.8 roughness exponent, typical of a self‐affine regime. One possible interpretation is that fault geometry controls to some extent the distribution of aseismic slip, as it has been shown previously for coseismic slip along active faults. Creep is characterized by local fluctuations in rates that we define as creep bursts. The potency of creep bursts follows a power‐law behavior similar to the Gutenberg–Richter earthquake distribution, whereas the distribution of bursts velocity is non‐Gaussian, suggesting an avalanche‐like behavior of these slip events. Such similarities with earthquakes and lab experiments lead us to interpret the rich dynamics of creep bursts observed along the Haiyuan fault as resulting from long‐range elastic interactions within the heterogeneous Earth’s crust

    Pelayo en Covadonga [Texto impreso] : Romance histórico

    Get PDF
    Hay un ejemplar encuadernado con: Bandos divertidísimos contra los borrachos y borrachas, y gente aficionada al vino (NP849.91/3087)

    Comparison of Molecular Iodine Spectral Properties at 514.7 and 532 nm Wavelengths

    No full text
    International audienceWe present results of investigation and comparison of spectral properties of molecular iodine transitions in the spectral region of 514.7 nm that are suitable for laser frequency stabilization and metrology of length. Eight Doppler-broadened transitions that were not studied in detail before were investigated with the help of frequency doubled Yb-doped fiber laser, and three of the most promising lines were studied in detail with prospect of using them in frequency stabilization of new laser standards. The spectral properties of hyperfine components (linewidths, signal-to-noise ratio) were compared with transitions that are well known and traditionally used for stabilization of frequency doubled Nd:YAG laser at the 532 nm region with the same molecular iodine absorption. The external frequency doubling arrangement with waveguide crystal and the Yb-doped fiber laser is also briefly described together with the observed effect of laser aging

    Case study: ENVRI science demonstrators with D4Science

    Get PDF
    Whenever a community of practice starts developing an IT solution for its use case(s) it has to face the issue of carefully selecting “the platform” to use. Such a platform should match the requirements and the overall settings resulting from the specific application context (including legacy technologies and solutions to be integrated and reused, costs of adoption and operation, easiness in acquir- ing skills and competencies). There is no one-size-fits-all solution that is suitable for all application context, and this is particularly true for scientific communities and their cases because of the wide heterogeneity characterising them. However, there is a large consensus that solutions from scratch are inefficient and services that facilitate the development and maintenance of scientific community-specific solutions do exist. This chapter describes how a set of diverse communities of practice efficiently developed their science demonstrators (on analysing and pro- ducing user-defined atmosphere data products, greenhouse gases fluxes, particle formation, mosquito diseases) by leveraging the services offered by the D4Science infrastructure. It shows that the D4Science design decisions aiming at streamlin- ing implementations are effective. The chapter discusses the added value injected in the science demonstrators and resulting from the reuse of D4Science services, especially regarding Open Science practices and overall quality of service

    Superfluid Density and Field-Induced Magnetism in Ba(Fe1-xCox)2As2 and Sr(Fe1-xCox)2As2 Measured with Muon Spin Relaxation

    Full text link
    We report muon spin rotation (μ\muSR) measurements of single crystal Ba(Fe1x_{1-x}Cox_x)2_2As2_2 and Sr(Fe1x_{1-x}Cox_x)2_2As2_2. From measurements of the magnetic field penetration depth λ\lambda we find that for optimally- and over-doped samples, 1/λ(T0)21/\lambda(T\to 0)^2 varies monotonically with the superconducting transition temperature TC_{\rm C}. Within the superconducting state we observe a positive shift in the muon precession signal, likely indicating that the applied field induces an internal magnetic field. The size of the induced field decreases with increasing doping but is present for all Co concentrations studied.Comment: 7 pages, accepted for publication in Phys. Rev.

    Knot selection in sparse Gaussian processes with a variational objective function

    Get PDF
    Sparse, knot‐based Gaussian processes have enjoyed considerable success as scalable approximations of full Gaussian processes. Certain sparse models can be derived through specific variational approximations to the true posterior, and knots can be selected to minimize the Kullback‐Leibler divergence between the approximate and true posterior. While this has been a successful approach, simultaneous optimization of knots can be slow due to the number of parameters being optimized. Furthermore, there have been few proposed methods for selecting the number of knots, and no experimental results exist in the literature. We propose using a one‐at‐a‐time knot selection algorithm based on Bayesian optimization to select the number and locations of knots. We showcase the competitive performance of this method relative to optimization of knots simultaneously on three benchmark datasets, but at a fraction of the computational cost

    TAMPA (Estados Unidos) (Florida) (Bahía). Cartas náuticas. 1886 (1877-1879). 1:125125

    Get PDF
    Escalas gráficas de 10 millas [= 14,8 cm] y 10 minutos [= 13,1 cm]. Coordenadas del faro de Cayo Cruz referidas al meridiano de San Fernando (O 76°33'16"/N 27°36'04"). Orientado con estrellas en tres gráficos de declinación magnéticaIndica sondas e isolíneas batimétricas expresadas en metros, veriles y bancos de arenaToponimia costera de los principales accidentes geográficosClave hidrográfica para determinar la calidad del fondoConsta el sello del Depósito Hidrográfic
    corecore