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Abstract— The increasing degree of connectivity between
vehicles and infrastructure, and the impending deployment of
autonomous vehicles (AV) in urban streets, presents unique
opportunities and challenges regarding the on-street parking
provision for AVs. This study develops a novel simulation-
optimisation approach for intelligent curbside management,
based on a metaheuristic technique. This approach is tested
using an idealised grid layout with a range of flow rates and
parking policies. The hybrid method balances curb lanes for
driving or parking, aiming to minimise the average traffic delay.
Results demonstrate delays decreased by 9%-27% from the
benchmark case. Additionally, the delay distribution indicates
the trade-offs between expanding road capacity and minimising
traffic demand through curb management, demonstrating the
interplay between curb parking and traffic management in the
AV era.

I. INTRODUCTION

On-street or curbside parking, has attracted increasing
interest in transport management in recent years [1], [2].
On-street parking has many benefits, compared with those
off-street parking facilities. Namely, it can effectively save
the scarce land resource for other development purposes,
improve the utilisation of road space, alleviate congestion
caused by unnecessary cruising to parking facilities, shorten
walking distances, and even create barriers between heavy
traffic and pedestrians [1]–[3]. However, previous studies
have also indicated that on-street parking manoeuvres can
block traffic, reduce road capacity, increase potential hazard
among road users and increase average traffic delays [4]–[9].

There are unique opportunities and challenges with regard
to on-street parking for autonomous vehicles. In the first
instance, in the AVs era, off-street parking facilities will
be freed up for land reclamation [10], [11], leading higher
dependency on curb parking. Second, self-cruising ability
enables AV parking locations no longer to be confined within
a close range of destinations [2], [12], meaning parking
demands can be managed with a broader geographical scope.
Third, the pick-up and drop off (PUDO) feature of AVs
can shorten the occupancy time of on-street parking [13],
contributing to the greater flexibility of the curb lane use.
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Significantly, the increasing degree of connectivity between
AV fleets and infrastructure will allow versatile and efficient
utilisation of curbsides. To the knowledge of the authors,
there are few guidelines for sizing and placing parking areas
[13], [14]. Previous research on vehicle parking has not
probed into these related issues.

The present study addresses these new challenges to
the on-street parking problem. We conceived a simulation-
optimisation framework that utlises a genetic algorithm (GA)
to balance the curb use between parking and traffic cir-
culation. The objective is to minimise the average traffic
delay of AVs in the system, under different flow rates. As
an essential part of the method, the traffic simulation tool
SUMO (Simulation of Urban Mobility) and the metaheuristic
technique (a refined genetic algorithm) have been integrated
and employed. A grid network has been established, which
contains sixteen 250m × 250m urban blocks with 80 curb
lanes and 2000 parking slots. Varied combinations of parking
service rates (α) and AV flow rates (qmax) have been tested.

A method is proposed to optimise the curbside use in-
telligently under varied parking restrictions and traffic as-
signment conditions. The study facilitates to combine the
design of transport infrastructure (DTI) and modelling traffic
assignment (TA). The application of this study is beneficial
to transport and urban planning professionals, allowing them
to handle the complex dynamic traffic management and
infrastructure planning problem in a coordinated fashion.

II. LITERATURE REVIEW

Previous research concerning the on-street parking prob-
lem predominantly concentrates on three areas: the demand,
supply and pricing for parking [15], [16]; safety and delay
impacts of curb parking behaviours [17], [18]; the impact of
on-street parking on traffic operations [19], [20]. A subset
of studies from the third group has investigated how on-
street parking patterns can have an impact on such traffic
operations [21]–[23]. To address this issue, these studies
used cellular automata models [8], queuing models including
the M/M/∞ model [24], M/M/C model [25] and agent-based
models [26] to estimate the additional travel cost and traffic
congestion caused by on-street parking manoeuvres. Some
studies utilised microscopic traffic simulation software, in-
cluding VISSIM and SUMO (Simulation of Urban Mobility)
[19], [27]. We have identified the following research gaps
from the reviewed studies.



A. Modelling Objectives

One significant gap lies in the modelling objective. A wide
range of studies optimised a collection of variables other
than the average traffic delay. One related work built up a
network queuing model [20] to maximise the occupancy of
curb parking space. A similar approach was used by Wang et
al. [28], who minimised cruising distances, walking distance
and coverage of amenities to balance on-street and off-street
parking supply. Besides these variables, road capacity [19],
[21], cruising time [29] and parking service rate [26] are
all objective variables options according to previous studies.
However, few studies have minimised traffic delay to obtain
the optimal distribution of curb parking.

B. Simplification of Traffic Operations

Due to the complexity of interactions between on-street
parking behaviours and transport operations, previous math-
ematical models often simplified the representation of traffic
congestion, vehicular delays and microscopic driving ma-
noeuvres [20], [21], [23], [28]. Such a simplification would
lead to an approximation of the system or even inaccurate
outcomes. Compared with the mathematical models, the
simulation-based optimisation method can provide a fine-
grained and accurate representation of discrete traffic units
[29] and simulates complex manoeuvres.

Studies adopting the simulation methods can directly
model the complicated operations of traffic flow and parking
manoeuvres [19], [25], [27], [29]. For instance, Polycarpou
et al. [15] deployed a SUMO-based optimisation model to
find the optimal matching solutions between parking slots
and drivers [29]. The significant advantage of the simulation-
based approach lay in the fact that it can provide a fine-
grained and accurate representation of microscopic traffic
operations. However, this method did not seek to optimise
the distribution of parking space, nor to minimise the average
delay. Neither did it manage the curb lane use dynamically
through recursively running the traffic simulation.

C. Generality of Models

Most case-based studies only investigate the issue based
on a specific flow pattern or a fixed parking pattern. Their
findings are likely to be profoundly affected by factors
that are specific to the case study, such as the geometry
of road grids, signal timing, parking space geometries and
interference from other active modes of transport [5], [6],
[27], [30]. To alleviate the impact of these specific factors, it
is critical to develop an ideal and generic environment which
simulates the movements of AVs. Besides, testing varied
parking policies under different traffic saturation conditions
is equally significant.

III. METHODOLOGY

We establish a simulation-based genetic algorithm to op-
timise the curb lane use, minimising average traffic delay
of AVs. This method finds an optimal on-street parking
pattern under varying flow rates and parking service rates.
Two essential parts comprise the main body of our method:

Fig. 1. Flow Chart of On-street Parking Areas Optimisation Model

SUMO (Simulation of Urban Mobility) evaluates the plans
proposed by a genetic algorithm (GA).

Respectively, the primary function of SUMO is to con-
figure the geometries of road grids and curb parking areas,
to generate vehicular routes, and to simulate traffic flow. On
top of that, a GA is employed and integrated with SUMO to
optimise the curb parking plan (p). The reason for choosing
such a metaheuristic technique is that it has shown high
suitability and efficiency in solving complex optimisation
problems [26], [29]. Fig.1 illustrates the simulation and
optimisation workflow between the two parts, with bold
arrows highlighting the optimisation process using the GA.

A. Configuration Environment

A geometry configurator creates a grid plan consists of 16
urban blocks as a virtual simulation environment. Sixty 250
meter-long bi-directional streets comprise the basic frame of
the network, in which the central forty streets are embedded
with curb lanes prepared for parking. The twenty remaining
peripheral streets are used as guiding paths for AVs to enter
and leave the system. For each link direction, there is a curb-
side and an overtaking lane. At each end of a curb lane,
adequate space remains to avoid the bottleneck effect [23],
leaving the maximum capacity of 25 available slots for each
curb lane. Fig.2 demonstrates this simulation environment
with detailed streets layout at an intersection.

Routes are generated based on the network geometry, flow
rates, parking locations and parking policy. For all routes
from entrance a to exit b, where (a,b) ∈ ODs (the set of
all origin-destination pairs), flow fa,b is equal to the sum of
all vehicular trips from a to b. Note that there are multiple
possible routes for a single trip r, depending on which
intersections a vehicle passes through, where r ∈ Ra,b is one
such route that originates at a and finishes at b. The value of
fa,b follows a uniform distribution given the maximum flow



Fig. 2. SUMO Configuration of the Road Network

Fig. 3. Behaviour 1: Overtaking A Stationary AVs

rate qmax, which is expressed in Eq.1.

fa,b = ∑
r∈Ra,b

fr =rand(0,qmax] ∀a,b ∈ ODs (1)

Two important vehicular operations are realised to manage
the use of curb parking intelligently. As Fig.3 shows, the
first operation is parking-in-order, which requires vehicles to
primarily occupy vacant slots closest to the upstream entry
of a lane. It means that the front unoccupied curb spaces can
still be used for circulating traffic flow. On top of that, the
second essential operation is to permit successive vehicles
to overtake a stationary vehicle. In this fashion, on-street
parking only occupies reasonable space instead of blocking
the whole road, thereby reducing capacity without cutting
the flow of vehicles entirely. However, parked vehicles will
not participate in traffic circulation, reducing traffic demand
of the system. Therefore, allocating curb lanes for parking
introduces a trade-off between road capacity and traffic
demand.

B. Optimisation with Genetic Algorithm

Genetic algorithms (GAs) are a class of metaheuristic al-
gorithms that are used to find high-quality solutions to large-
scale, non-linear optimisation problems [31]. Inspired by
genetic processes in biology, GAs apply selection, crossover
and mutation operations to imitate the natural selection
process [32]. The search spaces are often enormous. The
number of possible solutions to the parking space allocation
problem is

(nc
np

)
, where nc,np denote the number of candidate

TABLE I
VARIABLES AND PARAMETERS FOR SUMO-GA

Parameters Symbol Values
Max Generations I 100
Population Size s 12
Selection Rate η 0.5
Parking Service Rate α 0 0.25 0.50 0.75 1
Parking Candidates nc 80
Parking Areas np 0 20 40 60 80
Max flow qmax 10 25 40 55 70

Algorithm 1: Pseudocode of SUMO-GA Model
Population1← Initialisation(s,nc,α)
for i = 1:100 do

for j = 0:s-1 do
delayi, j← simulate(Populationi, j)

end for
Parents ← Selection(delayi,η)
Offspring ← Crossover(Parents)
for k = 0 : s−1 do

Child ← Mutation(Offspringk)
Populationi+1,k← Child

end for
end for

parking areas and the number of permitted parking areas
respectively. For instance, with a parking service rate of
0.5, and 80 candidate parking areas, the total number of
possible solutions is 80!

40!40! ≈ 1023. Despite the magnitude
of the search space, the GA quickly converges to a locally
optimal solution.

The optimisation problem is represented as follows. Given
the AV flow patterns q, the model tries to find the optimal
pattern of on-street parking distribution p, which has the
highest fitness score, namely the lowest average traffic delay
D. As expressed in Formula.2 and Eq.3, the objective is to
minimise D over the control p, and input q. V is the set
of vehicle indices. Ti is travel time calculated for vehicle
i, from the time the AV enters into the network until it
leaves. Given q, Fi represents the delay-free time required
for vehicle i to pass through the network. A parked AV stays
in a curb parking space for half an hour, and this time does
not contribute toward delay.

minimise D(p;q) (2)

D(p;q) =
1
|V | ∑i∈V

(Ti(p;q)−Fi(x)) (3)

The GA method consists of five essential steps: popula-
tion initialisation, traffic delay simulation, parents selection,
offspring crossover and mutation. Algorithm.1 outlines the
optimisation process and Table.I describes parameters and
variables used in this section.

Initialisation The initial step is to create the generation
zero population, as demonstrated in Fig.4. Binary values
(0,1), as the basic genes, represent the serving states of 80



Fig. 4. Illustration of Population, Crossover and Mutation of GA

parking areas. 1 indicates an available parking area and 0
indicates an area where parking is currently prohibited. The
total permitted number of 1s, is determined by the number
of candidate parking areas and the parking service rate α ,
following a function expressed in Eq.4. Genes then form a
binary sequence, known as a chromosome, representing a
possible curb parking distribution plan p. Generally, s chro-
mosomes construct a population, which is the fundamental
unit to evolve through i generations.

Calculation of Traffic Delay Each chromosome, as a plan
(p j), can now be used to allocate an available parking area.
SUMO then simulates traffic and calculates the average delay
D j of the plan p j. With these computed delays (one for
each chromosome), the method selects elite chromosomes
following a selection strategy in Eq.5 with rate η . Only the
elite chromosomes, called parents, are eligible for mating in
the next step. We set selection rate η=0.5 here, indicating
that only six parents (Parentsi) out of the 12 chromosomes
are allowed to evolve for each generation.

np =α ·nc (4)
nparents =η · s (5)

Crossover and Mutation The final step is to generate
twelve children out of the elite parents, through crossover and
mutation procedures. The crossover process shuffles genes of
a pair of parents to produce four offspring units randomly.
The offspring units are the ’premature’ in the sense that
they might have excessive one or zero genes. An excess

of one or zero genes violates the parking policy, which
should be prohibited. To avoid this, a mutation operator
randomly removes the excessive genes to achieve the parking
service rate (α). The children, as qualified chromosomes,
eventually form a new generation of the population. The
GA optimisation process continues until all chromosomes
in a generation converge to the same solution. In all tests,
convergence occurred in less than 100 generations.

IV. RESULTS AND DISCUSSION

In this section, we first analysed the optimal curb parking
results on the basis of two scenarios. Followed by that,
a convergence performance diagram has been attached to
demonstrate the optimisation ability of this designed SUMO-
GA method. We further investigated the distribution of aver-
age delay of all scenarios, for both the base circumstance and
the GA-optimised condition. Additionally, the utility of this
method has been discussed by comparing the improvements
of average delay across scenarios.

A. Optimal Patterns of Curb Parking

Testing was conducted for twenty-five scenarios based on
a variety of parking provision rates and maximum flows.
The parking service rates tested were (α=0, 0.25, 0.5, 0.75
and 1) and maximum flows generated for each OD pair
were (qmax=10, 25, 40, 55 and 70 veh/h). Results based
on all scenarios demonstrated a good optimisation ability
of this SUMO-GA method. In general, the method reduced
the average traffic delay by 7s-57s, which corresponds to a
relative decrease of 9%-27% compared to the average result
of generation 0 of the GA.

Fig.5 demonstrates the optimised distribution of curb park-
ing lanes in two scenarios, namely, α=0.25 with qmax=10,
and α=0.5 with qmax=70. The colours represent the use of
curb lanes, with red for parking and grey for driving. Line
width and opacity indicate the magnitude of traffic flow
assigned to each link. It can be noted that, when both parking
service rate and traffic flow rate are low, curb parking areas
are likely to be allocated to avoid links with heavy traffic.
As the two variables increase, such spatial division becomes
less visually obvious.

Fig.6 shows the convergence of the GA under the scenario
of α = 0.5 and qmax=70 veh/h. The optimisation converges
at generation 33 with an average delay of 490s. Even
though the delay does not converge monotonically, due to the
stochastic nature of metaheuristic methods, such declining
trend is quite clear. Similarly, in other scenarios, the average
delays generally converged around 32 (±15) generations,
meaning all tests converge far earlier than the maximum 100
generations.

B. Traffic Saturation Thresholds

The average traffic delays were acquired of all 25 scenarios
with different max flow rates (qmax=10, 25, 40, 55, 70 veh/h)
and on-street parking service rates (α=0, 0.25, 0.5, 0.75 and
1) using SUMO. The average delay before GA optimisation
is denoted as D0 for the benchmark circumstance, which



Fig. 5. Optimal Curb Parking Distribution Under Two Scenarios

Fig. 6. Convergence of Genetic Algorithm Over Successive Generations

equals the average delay of generation 0. D∗ denotes the
optimised average delay after GA optimisation.

Two curved surfaces in Fig.7 demonstrate the distribution
of the average delay of D0 and D∗. When α is constant, the
average delay increases drastically as the flow rate increases.
This indicates that traffic delay is predominantly determined
by the traffic flow rather than parking service rate. This
is further evidenced by comparing the average coefficient
of variations (CV ) while varying two variables. When flow
rate varies, CV = 1.08 (> 0.35), suggesting a relatively
high degree of variation. In comparison, when the parking
service rate varies, changes in delay are not significant, with
CV = 0.24.

The gradients in both figures display prompt and steep
increases at the max flow rate of 40-55 veh/h with an average
gradient of 24.87s/veh ·h−1. Compared with 0.83s/veh ·h−1

with lower flow rates, the sharp rise implies the existence of
a threshold between the under-saturated and over-saturated
traffic. As traffic builds up, the congestion level is likely to
increase in a near exponential fashion [33].

Fig. 7. Initial and SUMO-GA Optimised Traffic Delay

Fig. 8. Absolute and Relative Improvements of Delay

C. Trade-offs Between Driving and Parking

Two concave regions appear in both curved surfaces
around α=0.5, qmax=55-70 veh/h. These concave regions
represent the trade-offs between reducing road capacity and
reducing traffic demand. Concretely, in saturated traffic sce-
narios, if half of the curb lanes are utilised for parking, the
average delay significantly reduces from 416s (α=1) and
494s (α=0) to 346s. These trade-offs highlight the fact that
even though the traffic is over-saturated, the average delay is
reduced by temporarily occupying driving lanes for parking.

The rationale of this compromise in over-saturated traffic
conditions can be explained by investigating the relationship
between traffic demand and road capacity. Given a fixed flow
rate, when parking is prohibited (α=0), curb lanes primarily
serve traffic flow. By restricting curb lane use to driving,
traffic congestion is expected to alleviate, and average delay
declines due to an increase in capacity. However, our results
provide evidence that curb parking may also contribute to
reducing delays, as vehicles are removed from the driving
lanes and this restrains traffic demand. In other words,
implementing appropriate parking policies can benefit traffic
operations. Thus, our results indicate a complex correlation
for this on-street parking problem. These findings extend
previous studies [19], [21], which attempted to prove a
negatively correlated, linear relationship between on-street
parking and transport efficiency.

D. Map of Improvements

Fig.7 demonstrates the absolute improvement of average
delay (left figure), and the relative improvement (right fig-
ure) respectively. The absolute improvement, equivalent to
D0−D∗, echos the trends shown in the previous Fig.8. The
function plotted in figure 7 indicates a maximum difference
of 55.60s per AV at the max flow rate of 70 veh/h. The
results show that the method is more effective at reducing
average delay in over-saturated traffic conditions.

On the other hand, the relative improvements figure (Fig.
8) demonstrates how much delay has been reduced in com-
parison with the benchmark circumstance, namely (D0 −
D∗)/D0. The saddle-like distribution of these improvements
shows that relative performance is better for under-saturated
traffic conditions. An AV saves, on average, 28% delay
with the implementation of this method. The high relative
reduction at the parking service rate of 0.5 suggests it is the



optimal parking policy for the scenarios tested. This finding
reflects the previous conclusions made about the trade-offs
between driving and parking.

V. CONCLUSIONS

This study provides a solution for the the curb lane
parking provision problem, taking into consideration the
unique aspects that AVs introduce. A SUMO simulation-
based genetic algorithm has been deployed to optimise the
curb lane use in accordance with traffic flow conditions and
parking policies. A virtual grid plan and AV flows were
configured in SUMO, and the curb lane parking plans were
represented and optimised using a GA. Twenty-five scenarios
with varied max flow rates and differing parking service rates
were investigated.

The results demonstrate a trade-off between traffic demand
and network capacity, as the parking provision service rate
changes. Additionally, the concave region of the delay dis-
tribution shows that curb parking management effectively
optimises reductions in traffic delay, even for over-saturated
conditions. It was demonstrated that the proposed method
is capable of lowering average delay in both under- and
over-saturated cases. However, it is more beneficial in over-
saturated cases.

This study provides a new scope to solve the combined
problem of dynamic traffic assignment and transport infras-
tructure design. Further work will focus on improving the ro-
bustness of the method by introducing more computationally
efficient, macroscopic models. It would also be beneficial to
investigate the application of this method to street design and
traffic management in a real-world setting.
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