93 research outputs found
Recommended from our members
Erratum: Consortium biology in immunology: The perspective from the Immunological Genome Project
ITAM Signaling by Vav Family Rho Guanine Nucleotide Exchange Factors Regulates Interstitial Transit Rates of Neutrophils In Vivo
In response to infection, neutrophils are quickly recruited from the blood into inflamed tissues. The interstitial migration of neutrophils is crucial for the efficient capture and control of rapidly proliferating microbes before microbial growth can overwhelm the host's defenses. However, the molecular mechanisms that regulate interstitial migration are incompletely understood.Here, we use two-photon microscopy (2PM) to study discrete steps of neutrophil responses during subcutaneous infection with bacteria. Our study demonstrates that signals emanating from ITAM-containing receptors mediated by Vav family Rho GEFs control the velocity, but not the directionality, of neutrophil migration towards sites of bacterial infection.Here we show that during neutrophil migration towards sites of bacterial infection, signals emanating from ITAM-containing receptors specifically control interstitial neutrophil velocity
Gene Expression during the Generation and Activation of Mouse Neutrophils: Implication of Novel Functional and Regulatory Pathways
As part of the Immunological Genome Project (ImmGen), gene expression was determined in unstimulated (circulating) mouse neutrophils and three populations of neutrophils activated in vivo, with comparison among these populations and to other leukocytes. Activation conditions included serum-transfer arthritis (mediated by immune complexes), thioglycollate-induced peritonitis, and uric acid-induced peritonitis. Neutrophils expressed fewer genes than any other leukocyte population studied in ImmGen, and down-regulation of genes related to translation was particularly striking. However, genes with expression relatively specific to neutrophils were also identified, particularly three genes of unknown function: Stfa2l1, Mrgpr2a and Mrgpr2b. Comparison of genes up-regulated in activated neutrophils led to several novel findings: increased expression of genes related to synthesis and use of glutathione and of genes related to uptake and metabolism of modified lipoproteins, particularly in neutrophils elicited by thioglycollate; increased expression of genes for transcription factors in the Nr4a family, only in neutrophils elicited by serum-transfer arthritis; and increased expression of genes important in synthesis of prostaglandins and response to leukotrienes, particularly in neutrophils elicited by uric acid. Up-regulation of genes related to apoptosis, response to microbial products, NFkB family members and their regulators, and MHC class II expression was also seen, in agreement with previous studies. A regulatory model developed from the ImmGen data was used to infer regulatory genes involved in the changes in gene expression during neutrophil activation. Among 64, mostly novel, regulatory genes predicted to influence these changes in gene expression, Irf5 was shown to be important for optimal secretion of IL-10, IP-10, MIP-1α, MIP-1β, and TNF-α by mouse neutrophils in vitro after stimulation through TLR9. This data-set and its analysis using the ImmGen regulatory model provide a basis for additional hypothesis-based research on the importance of changes in gene expression in neutrophils in different conditions
Economic impact of screening for X-linked Adrenoleukodystrophy within a newborn blood spot screening programme.
BACKGROUND: A decision tree model was built to estimate the economic impact of introducing screening for X-linked adrenoleukodystrophy (X-ALD) into an existing tandem mass spectrometry based newborn screening programme. The model was based upon the UK National Health Service (NHS) Newborn Blood Spot Screening Programme and a public service perspective was used with a lifetime horizon. The model structure and parameterisation were based upon literature reviews and expert clinical judgment. Outcomes included health, social care and education costs and quality adjusted life years (QALYs). The model assessed screening of boys only and evaluated the impact of improved outcomes from hematopoietic stem cell transplantation in patients with cerebral childhood X-ALD (CCALD). Threshold analyses were used to examine the potential impact of utility decrements for non-CCALD patients identified by screening. RESULTS: It is estimated that screening 780,000 newborns annually will identify 18 (95%CI 12, 27) boys with X-ALD, of whom 10 (95% CI 6, 15) will develop CCALD. It is estimated that screening may detect 7 (95% CI 3, 12) children with other peroxisomal disorders who may also have arisen symptomatically. If results for girls are returned an additional 17 (95% CI 12, 25) cases of X-ALD will be identified. The programme is estimated to cost an additional £402,000 (95% CI £399-407,000) with savings in lifetime health, social care and education costs leading to an overall discounted cost saving of £3.04 (95% CI £5.69, £1.19) million per year. Patients with CCALD are estimated to gain 8.5 discounted QALYs each giving an overall programme benefit of 82 (95% CI 43, 139) QALYs. CONCLUSION: Including screening of boys for X-ALD into an existing tandem mass spectrometry based newborn screening programme is projected to reduce lifetime costs and improve outcomes for those with CCALD. The potential disbenefit to those identified with non-CCALD conditions would need to be substantial in order to outweigh the benefit to those with CCALD. Further evidence is required on the potential QALY impact of early diagnosis both for non-CCALD X-ALD and other peroxisomal disorders. The favourable economic results are driven by estimated reductions in the social care and education costs
NK cells and cancer: you can teach innate cells new tricks
Natural killer (NK) cells are the prototype innate lymphoid cells endowed with potent cytolytic function that provide host defence against microbial infection and tumours. Here, we review evidence for the role of NK cells in immune surveillance against cancer and highlight new therapeutic approaches for targeting NK cells in the treatment of cancer
Stage-specific regulation of natural killer cell homeostasis and response against viral infection by microRNA-155
Natural killer (NK) cells function in the recognition and destruction of host cells infected with pathogens. Many regulatory mechanisms govern the potent responses of NK cells, both at the cellular and molecular level. Ablation of microRNA (miRNA) processing enzymes demonstrated that miRNAs play critical roles in NK cell differentiation and function; however, the role of individual miRNAs requires further investigation. Using mice containing a targeted deletion of microRNA-155 (miR-155), we observed defects in NK cell maintenance and maturation at steady state, as well as in homeostatic proliferation in lymphopenic mice. In addition, we discovered that miR-155 is up-regulated in activated NK cells during mouse cytomegalovirus (MCMV) infection in response to signals from the proinflammatory cytokines IL-12 and IL-18 and through signal transducer and activator of transcription 4 (STAT4) signaling. Although miR-155 was found to be dispensable for cytotoxicity and cytokine production when triggered through activating receptors, NK cells lacking miR-155 exhibited severely impaired effector and memory cell numbers in both lymphoid and nonlymphoid tissues after MCMV infection. We demonstrate that miR-155 differentially targets Noxa and suppressor of cytokine signaling 1 (SOCS1) in NK cells at distinct stages of homeostasis and activation. NK cells constitutively expressing Noxa and SOCS1 exhibit profound defects in expansion during the response to MCMV infection, suggesting that their regulation by miR-155 promotes antiviral immunity
- …