10,788 research outputs found

    Symmetric-Gapped Surface States of Fractional Topological Insulators

    Full text link
    We construct the symmetric-gapped surface states of a fractional topological insulator with electromagnetic θ\theta-angle θem=π3\theta_{em} = \frac{\pi}{3} and a discrete Z3\mathbb{Z}_3 gauge field. They are the proper generalizations of the T-pfaffian state and pfaffian/anti-semion state and feature an extended periodicity compared with their of "integer" topological band insulators counterparts. We demonstrate that the surface states have the correct anomalies associated with time-reversal symmetry and charge conservation.Comment: 5 pages, 33 references and 2 pages of supplemental materia

    Effects of Zeeman spin splitting on the modular symmetry in the quantum Hall effect

    Full text link
    Magnetic-field-induced phase transitions in the integer quantum Hall effect are studied under the formation of paired Landau bands arising from Zeeman spin splitting. By investigating features of modular symmetry, we showed that modifications to the particle-hole transformation should be considered under the coupling between the paired Landau bands. Our study indicates that such a transformation should be modified either when the Zeeman gap is much smaller than the cyclotron gap, or when these two gaps are comparable.Comment: 8 pages, 4 figure

    Photoassisted tunneling from free-standing GaAs thin films into metallic surfaces

    Full text link
    The tunnel photocurrent between a gold surface and a free-standing semiconducting thin film excited from the rear by above bandgap light has been measured as a function of applied bias, tunnel distance and excitation light power. The results are compared with the predictions of a model which includes the bias dependence of the tunnel barrier height and the bias-induced decrease of surface recombination velocity. It is found that i) the tunnel photocurrent from the conduction band dominates that from surface states. ii) At large tunnel distance the exponential bias dependence of the current is explained by that of the tunnel barrier height, while at small distance the change of surface recombination velocity is dominant

    From insulator to quantum Hall liquid at low magnetic fields

    Full text link
    We have performed low-temperature transport measurements on a GaAs two-dimensional electron system at low magnetic fields. Multiple temperature-independent points and accompanying oscillations are observed in the longitudinal resistivity between the low-field insulator and the quantum Hall (QH) liquid. Our results support the existence of an intermediate regime, where the amplitudes of magneto-oscillations can be well described by conventional Shubnikov-de Haas theory, between the low-field insulator and QH liquid.Comment: Magneto-oscillations governed by Shubnikov-de Haas theory are observed between the low-field insulator and quantum Hall liqui

    The properties of the Malin 1 galaxy giant disk: A panchromatic view from the NGVS and GUViCS surveys

    Get PDF
    Low surface brightness galaxies (LSBGs) represent a significant percentage of local galaxies but their formation and evolution remain elusive. They may hold crucial information for our understanding of many key issues (i.e., census of baryonic and dark matter, star formation in the low density regime, mass function). The most massive examples - the so called giant LSBGs - can be as massive as the Milky Way, but with this mass being distributed in a much larger disk. Malin 1 is an iconic giant LSBG, perhaps the largest disk galaxy known. We attempt to bring new insights on its structure and evolution on the basis of new images covering a wide range in wavelength. We have computed surface brightness profiles (and average surface brightnesses in 16 regions of interest), in six photometric bands (FUV, NUV, u, g, i, z). We compared these data to various models, testing a variety of assumptions concerning the formation and evolution of Malin 1. We find that the surface brightness and color profiles can be reproduced by a long and quiet star-formation history due to the low surface density; no significant event, such as a collision, is necessary. Such quiet star formation across the giant disk is obtained in a disk model calibrated for the Milky Way, but with an angular momentum approximately 20 times larger. Signs of small variations of the star-formation history are indicated by the diversity of ages found when different regions within the galaxy are intercompared.For the first time, panchromatic images of Malin 1 are used to constrain the stellar populations and the history of this iconic example among giant LSBGs. Based on our model, the extreme disk of Malin 1 is found to have a long history of relatively low star formation (about 2 Msun/yr). Our model allows us to make predictions on its stellar mass and metallicity.Comment: Accepted in Astronomy and Astrophysic

    Physics potential of future supernova neutrino observations

    Get PDF
    We point out possible features of neutrino spectra from a future galactic core collapse supernova that will enhance our understanding of neutrino mixing as well as supernova astrophysics. We describe the neutrino flavor conversions inside the star, emphasizing the role of "collective effects" that has been appreciated and understood only very recently. These collective effects change the traditional predictions of flavor conversion substantially, and enable the identification of neutrino mixing scenarios through signatures like Earth matter effects.Comment: 8 pages, uses jpconf.cls. Talk given at Neutrino 2008, Christchurch, NZ. Some entries in Table 2 have been correcte

    Magnetoresistance Anisotropy of Polycrystalline Cobalt Films: Geometrical-Size- and Domain-Effects

    Full text link
    The magnetoresistance (MR) of 10 nm to 200 nm thin polycrystalline Co-films, deposited on glass and insulating Si(100), is studied in fields up to 120 kOe, aligned along the three principal directions with respect to the current: longitudinal, transverse (in-plane), and polar (out-of-plane). At technical saturation, the anisotropic MR (AMR) in polar fields turns out to be up to twice as large as in transverse fields, which resembles the yet unexplained geometrical size-effect (GSE), previously reported for Ni- and Permalloy films. Upon increasing temperature, the polar and transverse AMR's are reduced by phonon-mediated sd-scattering, but their ratio, i.e. the GSE remains unchanged. Basing on Potters's theory [Phys.Rev.B 10, 4626(1974)], we associate the GSE with an anisotropic effect of the spin-orbit interaction on the sd-scattering of the minority spins due to a film texture. Below magnetic saturation, the magnitudes and signs of all three MR's depend significantly on the domain structures depicted by magnetic force microscopy. Based on hysteresis loops and taking into account the GSE within an effective medium approach, the three MR's are explained by the different magnetization processes in the domain states. These reveal the importance of in-plane uniaxial anisotropy and out-of-plane texture for the thinnest and thickest films, respectively.Comment: 10 pages, 9 figure
    corecore