46 research outputs found

    D025 Phagocytosis is pivotal in the beneficial effect of bone marrow mononuclear cellsbased therapy for myocardial infarction

    Get PDF
    Cell-based therapy is a promising option for treatment of cardiovascular diseases. Based on experimental studies demonstrating that bone marrow-derived mononuclear cells (BMMNCs) improve the functional recovery after ischemia, clinical trials were initiated to address this new therapeutic concept. BMMNCs improve neovascularization of ischemic tissue by a broad repertoire of potential therapeutic actions. Whereas initial studies documented that the cells incorporate and differentiate to cardiovascular cells, other studies suggested that short-time paracrine mechanisms mediate the beneficial effects. Here, we hypothesized that BMMNCs have a phagocytic ability, and switch to a proangiogenic phenotype after engulfment of apoptotic cells. Activation of such angiogenic program may be pivotal in the beneficial effect of BMMNCs-based therapy. In vitro, wildtype (WT) BMMNCs ingestion of apoptotic cells upregulated the release of proangiogenic factors VEGF and HGF by 15- and 5-fold, respectively. In contrast, BMMNCs collected from mice deficient in MFG-E8, a protein that is required for attachment and engulfment of apoptotic cells by phagocytes, displayed lower phagocytic ability, leading to decrease in VEGF and HGF release. The capacity of BMMNCs to differentiate into cells with endothelial phenotype was similar in control and MFG-E8-deficient cells. In an in vivo model of mice myocardial infaction (MI), transplantation of WT BMMNCs increased fractionnal shortening (120 % of untreated control, p<0.05), 14 days after MI. Size of the infarct scar was reduced by 30 % (p<0.05 vs untreated control), and capillary density in the infarct border zone was raised by 10 % (p<0.05 vs untreated control) in the WT BMMNCs group. In contrast, transplantation of MFG-E8 deficient BMMNCs displayed no significant effect on cardiac function, infarct size or angiogenesis in the ischemic myocardium. Four days after MI, VEGF protein levels were raised by 1.4 fold in the myocardium of WT BMMNCs treated animals compared to untreated controls (p<0.05), while treatment with MFG-E8 deficient BMMNCs failed to raise VEGF levels. Taken together, these results suggest that phagocytosis of apoptotic cells reprograms BMMNCs into a proangiogenic phenotype. Hence, the therapeutic effect of transplanted BMMNCs depends, at least in part, on their phagocytic ability

    D022 Natural CD4/CD25/Foxp3 regulatory t cells modulate post-ischemic inflammatory response: role in neovascularization

    Get PDF
    CD4+ and CD8+ T lymphocytes control revascularization after vascular occlusion. T cell activation is mediated by two major costimulatory signalings: the B7/CD28 and the CD40-CD40 ligand pathways. Interestingly, CD28 interactions with the structurally related ligands B7-1 and B7-2 are also required for the generation and homeostasis of CD4+CD25+ regulatory T cells (Treg), whichactively maintain immunological tolerance to self and nonself antigens. We hypothesized that naturally arising Treg modulate the immuno-inflammatory response to ischemic injury, and subsequently vessel growth.Ischemia was induced by right femoral artery ligation in CD28-deficient mice (n=10 per group). After 21 days of ischemia, CD28 deficiency showed a profound reduction in Treg number and upregulated post-ischemic inflammatory response and neovascularization. Similarly, injection of splenocytes isolated from CD28-/- mice in Rag1-/- mice with hindlimb ischemia increased angiographic score, foot perfusion, and capillary density by 2.2-, 2.3- and 1.1-fold, respectively, compared to PBS-injected Rag1-/- mice. These effects were associated with enhanced accumulation of CD3-positive T cells and Mac-3 positive macrophages in the ischemic leg of Rag1-/- mice treated with CD28-/- splenocytes. Interestingly, cotransfer of Treg with CD28-/- splenocytes in Rag1- /- mice abrogated activation of neovascularization induced by CD28-/- splenocytes. Inflammatory cells accumulation was also decreased in Rag1-/- transplanted with both Treg and CD28-/- splenocytes compared to mice receiving CD28-/- splenocytes only. In contrast, treatment of C57Bl/6 Wild-Type mice with an anti- CD25 antibody (PC61) markedly reduced endogenous Treg levels in blood and spleen. At day 14 of ischemia, inflammatory response and neovascularization were markedly increased in anti-CD25 treated Wild-Type mice compared to untreated mice. These results provide new insights into the immunoregulation of post-ischemic neovascularization

    MARK4 controls ischaemic heart failure through microtubule detyrosination.

    Get PDF
    Myocardial infarction is a major cause of premature death in adults. Compromised cardiac function after myocardial infarction leads to chronic heart failure with systemic health complications and a high mortality rate1. Effective therapeutic strategies are needed to improve the recovery of cardiac function after myocardial infarction. More specifically, there is a major unmet need for a new class of drugs that can improve cardiomyocyte contractility, because inotropic therapies that are currently available have been associated with high morbidity and mortality in patients with systolic heart failure2,3 or have shown a very modest reduction of risk of heart failure4. Microtubule detyrosination is emerging as an important mechanism for the regulation of cardiomyocyte contractility5. Here we show that deficiency of microtubule-affinity regulating kinase 4 (MARK4) substantially limits the reduction in the left ventricular ejection fraction after acute myocardial infarction in mice, without affecting infarct size or cardiac remodelling. Mechanistically, we provide evidence that MARK4 regulates cardiomyocyte contractility by promoting phosphorylation of microtubule-associated protein 4 (MAP4), which facilitates the access of vasohibin 2 (VASH2)-a tubulin carboxypeptidase-to microtubules for the detyrosination of α-tubulin. Our results show how the detyrosination of microtubules in cardiomyocytes is finely tuned by MARK4 to regulate cardiac inotropy, and identify MARK4 as a promising therapeutic target for improving cardiac function after myocardial infarction.BHF fellowship grant (FS/14/28/30713), Issac Newton Trust Grant (18.40u), and Cambridge BHF Centre of Research Excellence grants (RE/13/6/30180 and RE/18/1/34212)

    B lymphocytes trigger monocyte mobilization and impair heart function after acute myocardial infarction.

    Get PDF
    Acute myocardial infarction is a severe ischemic disease responsible for heart failure and sudden death. Here, we show that after acute myocardial infarction in mice, mature B lymphocytes selectively produce Ccl7 and induce Ly6C(hi) monocyte mobilization and recruitment to the heart, leading to enhanced tissue injury and deterioration of myocardial function. Genetic (Baff receptor deficiency) or antibody-mediated (CD20- or Baff-specific antibody) depletion of mature B lymphocytes impeded Ccl7 production and monocyte mobilization, limited myocardial injury and improved heart function. These effects were recapitulated in mice with B cell-selective Ccl7 deficiency. We also show that high circulating concentrations of CCL7 and BAFF in patients with acute myocardial infarction predict increased risk of death or recurrent myocardial infarction. This work identifies a crucial interaction between mature B lymphocytes and monocytes after acute myocardial ischemia and identifies new therapeutic targets for acute myocardial infarction.This work was supported by Inserm, British Heart Foundation (Z.M.), European Research Council (Z.M.), Fondation Coeur et Recherche (Z.M., T.S., N.D.), Fondation pour la Recherche Medicale (J.S.S.), European Union Seven Framework programme TOLERAGE (Z.M.), Fondation Leducq transatlantic network (C.J.B., D.T., A.T., J.S.S., Z.M.), National Institutes of Health grants AI56363 and AI057157, and a grant from The Lymphoma Research Foundation (T.F.T).This is the author accepted manuscript. The final version is available from Nature Publishing Group at http://dx.doi.org/10.1038/nm.3284

    The interstitium in cardiac repair: role of the immune-stromal cell interplay

    Get PDF
    Cardiac regeneration, that is, restoration of the original structure and function in a damaged heart, differs from tissue repair, in which collagen deposition and scar formation often lead to functional impairment. In both scenarios, the early-onset inflammatory response is essential to clear damaged cardiac cells and initiate organ repair, but the quality and extent of the immune response vary. Immune cells embedded in the damaged heart tissue sense and modulate inflammation through a dynamic interplay with stromal cells in the cardiac interstitium, which either leads to recapitulation of cardiac morphology by rebuilding functional scaffolds to support muscle regrowth in regenerative organisms or fails to resolve the inflammatory response and produces fibrotic scar tissue in adult mammals. Current investigation into the mechanistic basis of homeostasis and restoration of cardiac function has increasingly shifted focus away from stem cell-mediated cardiac repair towards a dynamic interplay of cells composing the less-studied interstitial compartment of the heart, offering unexpected insights into the immunoregulatory functions of cardiac interstitial components and the complex network of cell interactions that must be considered for clinical intervention in heart diseases

    The Chemokine Decoy Receptor D6 Prevents Excessive Inflammation and Adverse Ventricular Remodeling After Myocardial Infarction

    No full text
    OBJECTIVE: Leukocyte infiltration in ischemic areas is a hallmark of myocardial infarction, and overwhelming infiltration of innate immune cells has been shown to promote adverse remodeling and cardiac rupture. Recruitment of inflammatory cells in the ischemic heart depends highly on the family of CC-chemokines and their receptors. Here, we hypothesized that the chemokine decoy receptor D6, which specifically binds and scavenges inflammatory CC-chemokines, might limit inflammation and adverse cardiac remodeling after infarction. METHODS AND RESULTS: D6 was expressed in human and murine infarcted myocardium. In a murine model of myocardial infarction, D6 deficiency led to increased chemokine (C-C motif) ligand 2 and chemokine (C-C motif) ligand 3 levels in the ischemic heart. D6-deficient (D6(-/-)) infarcts displayed increased infiltration of pathogenic neutrophils and Ly6Chi monocytes, associated with strong matrix metalloproteinase-9 and matrix metalloproteinase-2 activities in the ischemic heart. D6(-/-) mice were cardiac rupture prone after myocardial infarction, and functional analysis revealed that D6(-/-) hearts had features of adverse remodeling with left ventricle dilation and reduced ejection fraction. Bone marrow chimera experiments showed that leukocyte-borne D6 had no role in this setting, and that leukocyte-specific chemokine (C-C motif) receptor 2 deficiency rescued the adverse phenotype observed in D6(-/-) mice. CONCLUSIONS: We show for the first time that the chemokine decoy receptor D6 limits CC-chemokine-dependent pathogenic inflammation and is required for adequate cardiac remodeling after myocardial infarction
    corecore