232 research outputs found

    The Association Between Corporate Social Responsibility and Corporate Fiancial Performance

    Get PDF
    Corporate Social Responsibility (CSR) is an emerging issue in the last two decades. Some people argue that the implementation of CSR increase corporate financial performance because CSR can bring sustainability for the firm. However, others argue companies should have better financial performance to do CSR. Previous studies show mixed results. This research aims to investigate the relationship between corporate financial performance and CSR. This study also examines the causality relationship that established between CSR and corporate financial performance. This study investigates 800 firms that listed on Indonesian Stock Exchange (IDX) in 2010 - 2012. Corporate financial performance is measured by two proxies, i.e. accounting based approach (ROA, ROE, and ROS) and stock-market based approach (stock return). While, CSR practices is measured by Corporate Social Disclosure Index (CSRDI) that developed base on Global Reporting Initiative (GRI) standard. The relationship between both of them was investigated by using multivariate linear regression. The causality relationships also consider the time difference between them, i.e. contemporaneous, lagging one period, and lagging two periods. Firm size and risk level are included in the regression as control variables. This study finds that (1) CSR provides positive impact on the financial performancein the contemporaneous and next 1 year time period; (2) financial performance that measured by ROA will influence positively CSR only for the next two years; (3) there is a significant positive relationship between firm size and CSR.These results suggest that CSR activities of Indonesia companies tend to be charity, so it only provides positive impact to the firm financial performance in no more than one year. In addition, it needs at least two years for profitable companies to realize their capability in CSR activities. Indonesian investors have not considered CSR as a key performance measure. Further, company size is a good predictor to the CSR practice

    Novel insights into the cardio-protective effects of FGF21 in lean and obese rat hearts

    Get PDF
    Aims: Fibroblast growth factor 21 (FGF21) is a hepatic metabolic regulator with pleotropic actions. Its plasma concentrations are increased in obesity and diabetes; states associated with an increased incidence of cardiovascular disease. We therefore investigated the direct effect of FGF21 on cardio-protection in obese and lean hearts in response to ischemia. Methods and Results: FGF21, FGF21-receptor 1 (FGFR1) and beta-Klotho (Ξ²Klotho) were expressed in rodent, human hearts and primary rat cardiomyocytes. Cardiac FGF21 was expressed and secreted (real time RT-PCR/western blot and ELISA) in an autocrine-paracrine manner, in response to obesity and hypoxia, involving FGFR1-Ξ²Klotho components. Cardiac-FGF21 expression and secretion were increased in response to global ischemia. In contrast Ξ²Klotho was reduced in obese hearts. In isolated adult rat cardiomyocytes, FGF21 activated PI3K/Akt (phosphatidylinositol 3-kinase/Akt), ERK1/2(extracellular signal-regulated kinase) and AMPK (AMP-activated protein kinase) pathways. In Langendorff perfused rat [adult male wild-type wistar] hearts, FGF21 administration induced significant cardio-protection and restoration of function following global ischemia. Inhibition of PI3K/Akt, AMPK, ERK1/2 and ROR-Ξ± (retinoic-acid receptor alpha) pathway led to significant decrease of FGF21 induced cardio-protection and restoration of cardiac function in response to global ischemia. More importantly, this cardio-protective response induced by FGF21 was reduced in obesity, although the cardiac expression profiles and circulating FGF21 levels were increased. Conclusion: In an ex vivo Langendorff system, we show that FGF21 induced cardiac protection and restoration of cardiac function involving autocrine-paracrine pathways, with reduced effect in obesity. Collectively, our findings provide novel insights into FGF21-induced cardiac effects in obesity and ischemia

    Deregulation of the endometrial stromal cell secretome precedes embryo implantation failure

    Get PDF
    STUDY QUESTION Is implantation failure following ART associated with a perturbed decidual response in endometrial stromal cells (EnSCs)? SUMMARY ANSWER Dynamic changes in the secretome of decidualizing EnSCs underpin the transition of a hostile to a supportive endometrial microenvironment for embryo implantation; perturbation in this transitional pathway prior to ART is associated with implantation failure. WHAT IS KNOWN ALREADY Implantation is the rate-limiting step in ART, although the contribution of an aberrant endometrial microenvironment in IVF failure remains ill defined. STUDY DESIGN, SIZE, DURATION In vitro characterization of the temporal changes in the decidual response of primary EnSCs isolated prior to a successful or failed ART cycle. An analysis of embryo responses to secreted cues from undifferentiated and decidualizing EnSCs was performed. The primary clinical outcome of the study was a positive urinary pregnancy test 14 days after embryo transfer. PARTICIPANTS/MATERIALS, SETTING, METHODS Primary EnSCs were isolated from endometrial biopsies obtained prior to IVF treatment and cryopreserved. EnSCs from 10 pregnant and 10 non-pregnant patients were then thawed, expanded in culture, subjected to clonogenic assays, and decidualized for either 2 or 8 days. Transcript levels of decidual marker gene [prolactin (PRL), insulin-like growth factor binding protein 1 (IGFBP1) and 11Ξ²-hydroxysteroid dehydrogenase (HSD11B1)] were analysed using real-time quantitative PCR and temporal secretome changes of 45 cytokines, chemokines and growth factors were measured by multiplex suspension bead immunoassay. The impact of the EnSC secretome on human blastocyst development was scored morphologically; and embryo secretions in response to EnSC cues analyzed by multiplex suspension bead immunoassay. MAIN RESULTS AND THE ROLE OF CHANCE Clonogenicity and induction of decidual marker genes were comparable between EnSC cultures from pregnant and non-pregnant group groups (P > 0.05). Analysis of 23 secreted factors revealed that successful implantation was associated with co-ordinated secretome changes in decidualizing EnSCs, which were most pronounced on Day 2 of differentiation: 17 differentially secreted proteins on Day 2 of decidualization relative to undifferentiated (Day 0) EnSCs (P 0.05)

    Lead Increases Lipopolysaccharide-Induced Liver Injury through Tumor Necrosis Factor-Ξ± Overexpression by Monocytes/Macrophages: Role of Protein Kinase C and p42/44 Mitogen-Activated Protein Kinase

    Get PDF
    Although lead and lipopolysaccharide (LPS), both important environmental pollutants, activate cells through different receptors and participate in distinct upstream signaling pathways, Pb increases the amount of LPS-induced tumor necrosis factor-Ξ± (TNF-Ξ±). We examined the cells responsible for the excess production of Pb-increased LPS-induced TNF-Ξ± and liver injury, and the roles of protein kinase C (PKC) and p42/44 mitogen-activated protein kinase (MAPK) in the induction of TNF-Ξ±. Peritoneal injection of Pb alone (100 ΞΌmol/kg) or a low dose of LPS (5 mg/kg) did not affect serum TNF-Ξ± or liver functions in A/J mice. In contrast, coexposure to these noneffective doses of Pb plus LPS (Pb+LPS) strongly induced TNF-Ξ± expression and resulted in profound liver injury. Direct inhibition of TNF-Ξ± or functional inactivation of monocytes/macrophages significantly decreased the level of Pb+LPS-induced serum TNF-Ξ± and concurrently ameliorated liver injury. Pb+LPS coexposure stimulated the phosphorylation of p42/44 MAPK and the expression of TNF-Ξ± in CD14(+) cells of cultured mouse whole blood, peritoneal macrophages, and RAW264.7 cells. Moreover, blocking PKC or MAPK effectively reduced Pb+LPS-induced TNF-Ξ± expression and liver injury. In summary, monocytes/macrophages were the cells primarily responsible for producing, through the PKC/MAPK pathway, the excess Pb-increased/LPS-induced TNF-Ξ± that caused liver injury

    CFD as a tool for modelling membrane systems

    Get PDF
    Computational fluid dynamics (CFD) is a computer-based numerical method used to analyse systems that involve fluid flow and/or heat and mass transfer (Versteeg & Malalasekera, 2007). CFD bridges the two different approaches for solving engineering problems before the computer era, theoretical and experimental; it relies on mathematical models while being easy to adapt to almost any realistic condition (Anderson & Wendt, 1995). Another feature of CFD is its versatility, as it allows the analysis of systems for a variety of applications such as chemical reactions (Salehi et al., 2016), aerodynamics (Snel, 2003), dispersion of pollutants (Chu et al., 2005), blood flows (Byun & Rhee, 2004), among many others

    Improvement of Sidestream Dark Field Imaging with an Image Acquisition Stabilizer

    Get PDF
    Background: In the present study we developed, evaluated in volunteers, and clinically validated an image acquisition stabilizer (IAS) for Sidestream Dark Field (SDF) imaging.Methods: The IAS is a stainless steel sterilizable ring which fits around the SDF probe tip. The IAS creates adhesion to the imaged tissue by application of negative pressure. The effects of the IAS on the sublingual microcirculatory flow velocities, the force required to induce pressure artifacts (PA), the time to acquire a stable image, and the duration of stable imaging were assessed in healthy volunteers. To demonstrate the clinical applicability of the SDF setup in combination with the IAS, simultaneous bilateral sublingual imaging of the microcirculation were performed during a lung recruitment maneuver (LRM) in mechanically ventilated critically ill patients. One SDF device was operated handheld; the second was fitted with the IAS and held in position by a mechanic arm. Lateral drift, number of losses of image stability and duration of stable imaging of the two methods were compared.Results: Five healthy volunteers were studied. The IAS did not affect microcirculatory flow velocities. A significantly greater force had to applied onto the tissue to induced PA with compared to without IAS (0.25 Β± 0.15 N without vs. 0.62 Β± 0.05 N with the IAS, p < 0.001). The IAS ensured an increased duration of a stable image sequence (8 Β± 2 s without vs. 42 Β± 8 s with the IAS, p < 0.001). The time required to obtain a stable image sequence was similar with and without the IAS. In eight mechanically ventilated patients undergoing a LRM the use of the IAS resulted in a significantly reduced image drifting and enabled the acquisition of significantly longer stable image sequences (24 Β± 5 s without vs. 67 Β± 14 s with the IAS, p = 0.006).Conclusions: The present study has validated the use of an IAS for improvement of SDF imaging by demonstrating that the IAS did not affect microcirculatory perfusion in the microscopic field of view. The IAS improved both axial and lateral SDF image stability and thereby increased the critical force required to induce pressure artifacts. The IAS ensured a significantly increased duration of maintaining a stable image sequence

    Differential Specificity of Endocrine FGF19 and FGF21 to FGFR1 and FGFR4 in Complex with KLB

    Get PDF
    Background: Recent studies suggest that betaKlotho (KLB) and endocrine FGF19 and FGF21 redirect FGFR signaling to regulation of metabolic homeostasis and suppression of obesity and diabetes. However, the identity of the predominant metabolic tissue in which a major FGFR-KLB resides that critically mediates the differential actions and metabolism effects of FGF19 and FGF21 remain unclear. Methodology/Principal Findings: We determined the receptor and tissue specificity of FGF21 in comparison to FGF19 by using direct, sensitive and quantitative binding kinetics, and downstream signal transduction and expression of early response gene upon administration of FGF19 and FGF21 in mice. We found that FGF21 binds FGFR1 with much higher affinity than FGFR4 in presence of KLB; while FGF19 binds both FGFR1 and FGFR4 in presence of KLB with comparable affinity. The interaction of FGF21 with FGFR4-KLB is very weak even at high concentration and could be negligible at physiological concentration. Both FGF19 and FGF21 but not FGF1 exhibit binding affinity to KLB. The binding of FGF1 is dependent on where FGFRs are present. Both FGF19 and FGF21 are unable to displace the FGF1 binding, and conversely FGF1 cannot displace FGF19 and FGF21 binding. These results indicate that KLB is an indispensable mediator for the binding of FGF19 and FGF21 to FGFRs that is not required for FGF1. Although FGF19 can predominantly activate the responses of the liver and to a less extent the adipose tissue, FGF21 can do so significantly only in the adipose tissue an

    A Better Anti-Diabetic Recombinant Human Fibroblast Growth Factor 21 (rhFGF21) Modified with Polyethylene Glycol

    Get PDF
    As one of fibroblast growth factor (FGF) family members, FGF21 has been extensively investigated for its potential as a drug candidate to combat metabolic diseases. In the present study, recombinant human FGF21 (rhFGF21) was modified with polyethylene glycol (PEGylation) in order to increase its in vivo biostabilities and therapeutic potency. At N-terminal residue rhFGF21 was site-selectively PEGylated with mPEG20 kDa-butyraldehyde. The PEGylated rhFGF21 was purified to near homogeneity by Q Sepharose anion-exchange chromatography. The general structural and biochemical features as well as anti-diabetic effects of PEGylated rhFGF21 in a type 2 diabetic rat model were evaluated. By N-terminal sequencing and MALDI-TOF mass spectrometry, we confirmed that PEG molecule was conjugated only to the N-terminus of rhFGF21. The mono-PEGylated rhFGF21 retained the secondary structure, consistent with the native rhFGF21, but its biostabilities, including the resistance to physiological temperature and trypsinization, were significantly enhanced. The in vivo immunogenicity of PEGylated rhFGF21 was significantly decreased, and in vivo half-life time was significantly elongated. Compared to the native form, the PEGylated rhFGF21 had a similar capacity of stimulating glucose uptake in 3T3-L1 cells in vitro, but afforded a significantly long effect on reducing blood glucose and triglyceride levels in the type 2 diabetic animals. These results suggest that the PEGylated rhFGF21 is a better and more effective anti-diabetic drug candidate than the native rhFGF21 currently available. Therefore, the PEGylated rhFGF21 may be potentially applied in clinics to improve the metabolic syndrome for type 2 diabetic patients

    Characterization of Oxidative Guanine Damage and Repair in Mammalian Telomeres

    Get PDF
    8-oxo-7,8-dihydroguanine (8-oxoG) and 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG) are among the most common oxidative DNA lesions and are substrates for 8-oxoguanine DNA glycosylase (OGG1)–initiated DNA base excision repair (BER). Mammalian telomeres consist of triple guanine repeats and are subject to oxidative guanine damage. Here, we investigated the impact of oxidative guanine damage and its repair by OGG1 on telomere integrity in mice. The mouse cells were analyzed for telomere integrity by telomere quantitative fluorescence in situ hybridization (telomere–FISH), by chromosome orientation–FISH (CO–FISH), and by indirect immunofluorescence in combination with telomere–FISH and for oxidative base lesions by Fpg-incision/Southern blot assay. In comparison to the wild type, telomere lengthening was observed in Ogg1 null (Ogg1βˆ’/βˆ’) mouse tissues and primary embryonic fibroblasts (MEFs) cultivated in hypoxia condition (3% oxygen), whereas telomere shortening was detected in Ogg1βˆ’/βˆ’ mouse hematopoietic cells and primary MEFs cultivated in normoxia condition (20% oxygen) or in the presence of an oxidant. In addition, telomere length abnormalities were accompanied by altered telomere sister chromatid exchanges, increased telomere single- and double-strand breaks, and preferential telomere lagging- or G-strand losses in Ogg1βˆ’/βˆ’ mouse cells. Oxidative guanine lesions were increased in telomeres in Ogg1βˆ’/βˆ’ mice with aging and primary MEFs cultivated in 20% oxygen. Furthermore, oxidative guanine lesions persisted at high level in Ogg1βˆ’/βˆ’ MEFs after acute exposure to hydrogen peroxide, while they rapidly returned to basal level in wild-type MEFs. These findings indicate that oxidative guanine damage can arise in telomeres where it affects length homeostasis, recombination, DNA replication, and DNA breakage repair. Our studies demonstrate that BER pathway is required in repairing oxidative guanine damage in telomeres and maintaining telomere integrity in mammals
    • …
    corecore