3,834 research outputs found
Event boundaries shape temporal organization of memory by resetting temporal context
In memory, our continuous experiences are broken up into discrete events. Boundaries between events are known to influence the temporal organization of memory. However, how and through which mechanism event boundaries shape temporal order memory (TOM) remains unknown. Across four experiments, we show that event boundaries exert a dual role: improving TOM for items within an event and impairing TOM for items across events. Decreasing event length in a list enhances TOM, but only for items at earlier local event positions, an effect we term the local primacy effect. A computational model, in which items are associated to a temporal context signal that drifts over time but resets at boundaries captures all behavioural results. Our findings provide a unified algorithmic mechanism for understanding how and why event boundaries affect TOM, reconciling a long-standing paradox of why both contextual similarity and dissimilarity promote TOM
Potential use of electrical somatosensory modality for BCI
INTRODUCTION: P300 is commonly used in noninvasive brain computer interface (BCI). Most P300 based BCIs were focus on visual and auditory stimulation [1]. Several previous reports present the potential use of vibrotactile stimulus for P300 BCI [2,3]. As an alternative, electrical somatosensory stimuli can be used for BCI ...published_or_final_versio
Interactions of energetic electrons with ULF waves triggered by interplanetary shock: Van Allen Probes observations in the magnetotail
Abstract We present in situ observations of a shock-induced substorm-like event on 13 April 2013 observed by the newly launched Van Allen twin probes. Substorm-like electron injections with energy of 30-500 keV were observed in the region from L∼5.2 to 5.5 immediately after the shock arrival (followed by energetic electron drift echoes). Meanwhile, the electron flux was clearly and strongly varying on the ULF wave time scale. It is found that both toroidal and poloidal mode ULF waves with a period of 150 s emerged following the magnetotail magnetic field reconfiguration after the interplanetary (IP) shock passage. The poloidal mode is more intense than the toroidal mode. The 90 phase shift between the poloidal mode Br and Ea suggests the standing poloidal waves in the Northern Hemisphere. Furthermore, the energetic electron flux modulations indicate that the azimuthal wave number is ∼14. Direct evidence of drift resonance between the injected electrons and the excited poloidal ULF wave has been obtained. The resonant energy is estimated to be between 150 keV and 230 keV. Two possible scenaria on ULF wave triggering are discussed: vortex-like flow structure-driven field line resonance and ULF wave growth through drift resonance. It is found that the IP shock may trigger intense ULF wave and energetic electron behavior at L∼3 to 6 on the nightside, while the time profile of the wave is different from dayside cases
Exact solution of gyration radius of individual's trajectory for a simplified human mobility model
Gyration radius of individual's trajectory plays a key role in quantifying
human mobility patterns. Of particular interests, empirical analyses suggest
that the growth of gyration radius is slow versus time except the very early
stage and may eventually arrive to a steady value. However, up to now, the
underlying mechanism leading to such a possibly steady value has not been well
understood. In this Letter, we propose a simplified human mobility model to
simulate individual's daily travel with three sequential activities: commuting
to workplace, going to do leisure activities and returning home. With the
assumption that individual has constant travel speed and inferior limit of time
at home and work, we prove that the daily moving area of an individual is an
ellipse, and finally get an exact solution of the gyration radius. The
analytical solution well captures the empirical observation reported in [M. C.
Gonz`alez et al., Nature, 453 (2008) 779]. We also find that, in spite of the
heterogeneous displacement distribution in the population level, individuals in
our model have characteristic displacements, indicating a completely different
mechanism to the one proposed by Song et al. [Nat. Phys. 6 (2010) 818].Comment: 4 pages, 4 figure
Machine learning of large-scale multimodal brain imaging data reveals neural correlates of hand preference
Lateralization is a fundamental characteristic of many behaviors and the organization of the brain, and atypical lateralization has been suggested to be linked to various brain-related disorders such as autism and schizophrenia. Right-handedness is one of the most prominent markers of human behavioural lateralization, yet its neurobiological basis remains to be determined. Here, we present a large-scale analysis of handedness, as measured by self-reported direction of hand preference, and its variability related to brain structural and functional organization in the UK Biobank (N = 36,024). A multivariate machine learning approach with multi-modalities of brain imaging data was adopted, to reveal how well brain imaging features could predict individual's handedness (i.e., right-handedness vs. non-right-handedness) and further identify the top brain signatures that contributed to the prediction. Overall, the results showed a good prediction performance, with an area under the receiver operating characteristic curve (AUROC) score of up to 0.72, driven largely by resting-state functional measures. Virtual lesion analysis and large-scale decoding analysis suggested that the brain networks with the highest importance in the prediction showed functional relevance to hand movement and several higher-level cognitive functions including language, arithmetic, and social interaction. Genetic analyses of contributions of common DNA polymorphisms to the imaging-derived handedness prediction score showed a significant heritability (h2=7.55%, p <0.001) that was similar to and slightly higher than that for the behavioural measure itself (h2=6.74%, p <0.001). The genetic correlation between the two was high (rg=0.71), suggesting that the imaging-derived score could be used as a surrogate in genetic studies where the behavioural measure is not available. This large-scale study using multimodal brain imaging and multivariate machine learning has shed new light on the neural correlates of human handedness
Treatment of infarcted heart tissue via the capture and local delivery of circulating exosomes through antibody-conjugated magnetic nanoparticles
The systemic biodistribution of endogenous extracellular vesicles is central to the maintenance of tissue homeostasis. Here, we show that angiogenesis and heart function in infarcted heart tissue can be ameliorated by the local accumulation of exosomes collected from circulation using magnetic nanoparticles. The nanoparticles consist of a Fe3O4 core and a silica shell that is decorated with poly (ethylene glycol) conjugated through hydrazone bonds to two types of antibody, which bind either to CD63 antigens on the surface of extracellular vesicles or to myosin-light-chain surface markers on injured cardiomyocytes. On application of a local magnetic field, accumulation of the nanoparticles and cleavage of the hydrazone bonds under the acidic pH of injured cardiac tissue lead to the local release of the captured exosomes. In rabbit and rat models of myocardial infarction, the magnetic-guided accumulation of captured CD63-expressing exosomes in infarcted tissue led to reductions in infarct size as well as improved left-ventricle ejection fraction and angiogenesis. The approach could be used to manipulate endogenous exosome biodistribution for the treatment of other diseases
Energetic ion injection and formation of the storm-time symmetric ring current
An extensive study of ring current injection and intensification of the storm-time ring current is conducted with three-dimensional (3-D) test particle trajectory calculations (TPTCs). The TPTCs reveal more accurately the process of ring current injection, with the main results being the following: (1) an intense convection electric field can effectively energize and inject plasma sheet particles into the ring current region within 1&ndash;3 h. (2) Injected ions often follow chaotic trajectories in non-adiabatic regions, which may have implications in storm and ring current physics. (3) The shielding electric field, which arises as a consequence of enhanced convection and co-exists with the injection and convection electric field, may cause the original open trajectories of injected ions with higher energy to change into closed ones, thus playing a role in the formation of the symmetric ring current
Cloning, localization and phylogenetic analysis of barley putative APETALA 2/ethylene responsive element binding protein (AP2/EREBP) genes
Eight putative barley AP2/EREBP genes were cloned based on the barley HarvEST database. The introns in the translated regions of these genes were all located at the front of the conserved AP2 domain. Among the eight genes, DNA sequences of hv.18885 and hv.17070 were the same between Steptoe and Morex. Of the other six genes, there was very high ratio of ‘G’ and ‘C’ bases in the variant DNA sequence regions of three genes between Steptoe and Morex. Thus, only three genes were successfully located on the chromosomes. hv.8737 and hv.15732 were mapped to the short arm of chromosome 7H and hv.2871 to a major quantitative trait loci (QTL) region conferring adult spot blotch tolerance on the short arm of chromosomes 3H. Phylogenetic analysis showed that putative plant AP2/EREBP genes in the AP2 subfamily were completely separated from those in other subfamilies. The putative AP2/EREBP genes in RAV and Soloist subfamilies were clustered together, while those in the ERF and CRT/DRE subfamily were clustered together. Among the main branch-groups of each subfamily in plant, those from wheat, barley and rice had the tendency to cluster together when compared with those from Arabidopsis.Key words: AP2/EREBP, clone, map, phylogenetic, barley
- …