219 research outputs found

    FBXW7 E3 ubiquitin ligase: degrading, not degrading, or being degraded

    Full text link
    https://deepblue.lib.umich.edu/bitstream/2027.42/152265/1/13238_2019_Article_652.pd

    Allele-Specific Deletions in Mouse Tumors Identify Fbxw7 as Germline Modifier of Tumor Susceptibility

    Get PDF
    Genome-wide association studies (GWAS) have been successful in finding associations between specific genetic variants and cancer susceptibility in human populations. These studies have identified a range of highly statistically significant associations between single nucleotide polymorphisms (SNPs) and susceptibility to development of a range of human tumors. However, the effect of each SNP in isolation is very small, and all of the SNPs combined only account for a relatively minor proportion of the total genetic risk (5–10%). There is therefore a major requirement for alternative routes to the discovery of genetic risk factors for cancer. We have previously shown using mouse models that chromosomal regions harboring susceptibility genes identified by linkage analysis frequently exhibit allele-specific genetic alterations in tumors. We demonstrate here that the Fbxw7 gene, a commonly mutated gene in a wide range of mouse and human cancers, shows allele-specific deletions in mouse lymphomas and skin tumors. Lymphomas from three different F1 hybrids show 100% allele-specificity in the patterns of allelic loss. Parental alleles from 129/Sv or Spretus/Gla mice are lost in tumors from F1 hybrids with C57BL/6 animals, due to the presence of a specific non-synonymous coding sequence polymorphism at the N-terminal portion of the gene. A specific genetic test of association between this SNP and lymphoma susceptibility in interspecific backcross mice showed a significant linkage (pβ€Š=β€Š0.001), but only in animals with a functional p53 gene. These data therefore identify Fbxw7 as a p53-dependent tumor susceptibility gene. Increased p53-dependent tumor susceptibility and allele-specific losses were also seen in a mouse skin model of skin tumor development. We propose that analysis of preferential allelic imbalances in tumors may provide an efficient means of uncovering genetic variants that affect mouse and human tumor susceptibility

    Key signalling nodes in mammary gland development and cancer: Myc

    Get PDF
    Myc has been intensely studied since its discovery more than 25 years ago. Insight has been gained into Myc's function in normal physiology, where its role appears to be organ specific, and in cancer where many mechanisms contribute to aberrant Myc expression. Numerous signals and pathways converge on Myc, which in turn acts on a continuously growing number of identified targets, via transcriptional and nontranscriptional mechanisms. This review will concentrate on Myc as a signaling mediator in the mammary gland, discussing its regulation and function during normal development, as well as its activation and roles in breast cancer

    Understanding complexity in the HIF signaling pathway using systems biology and mathematical modeling

    Get PDF
    Hypoxia is a common micro-environmental stress which is experienced by cells during a range of physiologic and pathophysiologic processes. The identification of the hypoxia-inducible factor (HIF) as the master regulator of the transcriptional response to hypoxia transformed our understanding of the mechanism underpinning the hypoxic response at the molecular level and identified HIF as a potentially important new therapeutic target. It has recently become clear that multiple levels of regulatory control exert influence on the HIF pathway giving the response a complex and dynamic activity profile. These include positive and negative feedback loops within the HIF pathway as well as multiple levels of crosstalk with other signaling pathways. The emerging model reflects a multi-level regulatory network that affects multiple aspects of the physiologic response to hypoxia including proliferation, apoptosis, and differentiation. Understanding the interplay between the molecular mechanisms involved in the dynamic regulation of the HIF pathway at a systems level is critically important in defining new appropriate therapeutic targets for human diseases including ischemia, cancer, and chronic inflammation. Here, we review our current knowledge of the regulatory circuits which exert influence over the HIF response and give examples of in silico model-based predictions of the dynamic behaviour of this system

    Targeting Lysophosphatidic Acid Signaling Retards Culture-Associated Senescence of Human Marrow Stromal Cells

    Get PDF
    Marrow stromal cells (MSCs) isolated from mesenchymal tissues can propagate in vitro to some extent and differentiate into various tissue lineages to be used for cell-based therapies. Cellular senescence, which occurs readily in continual MSC culture, leads to loss of these characteristic properties, representing one of the major limitations to achieving the potential of MSCs. In this study, we investigated the effect of lysophosphatidic acid (LPA), a ubiquitous metabolite in membrane phospholipid synthesis, on the senescence program of human MSCs. We show that MSCs preferentially express the LPA receptor subtype 1, and an abrogation of the receptor engagement with the antagonistic compound Ki16425 attenuates senescence induction in continually propagated human MSCs. This anti-aging effect of Ki16425 results in extended rounds of cellular proliferation, increased clonogenic potential, and retained plasticity for osteogenic and adipogenic differentiation. Expressions of p16Ink4a, Rb, p53, and p21Cip1, which have been associated with cellular senescence, were all reduced in human MSCs by the pharmacological inhibition of LPA signaling. Disruption of this signaling pathway was accompanied by morphological changes such as cell thinning and elongation as well as actin filament deformation through decreased phosphorylation of focal adhesion kinase. Prevention of LPA receptor engagement also promoted ubiquitination-mediated c-Myc elimination in MSCs, and consequently the entry into a quiescent state, G0 phase, of the cell cycle. Collectively, these results highlight the potential of pharmacological intervention against LPA signaling for blunting senescence-associated loss of function characteristic of human MSCs

    sel-11 and cdc-42, Two Negative Modulators of LIN-12/Notch Activity in C. elegans

    Get PDF
    Background: LIN-12/Notch signaling is important for cell-cell interactions during development, and mutations resulting in constitutive LIN-12/Notch signaling can cause cancer. Loss of negative regulators of lin-12/Notch activity has the potential for influencing cell fate decisions during development and the genesis or aggressiveness of cancer. Methodology/Principal Findings: We describe two negative modulators of lin-12 activity in C. elegans. One gene, sel-11, was initially defined as a suppressor of a lin-12 hypomorphic allele; the other gene, cdc-42, is a well-studied Rho GTPase. Here, we show that SEL-11 corresponds to yeast Hrd1p and mammalian Synoviolin. We also show that cdc-42 has the genetic properties consistent with negative regulation of lin-12 activity during vulval precursor cell fate specification. Conclusions/Significance: Our results underscore the multiplicity of negative regulatory mechanisms that impact on lin-12/ Notch activity and suggest novel mechanisms by which constitutive lin-12/Notch activity might be exacerbated in cancer

    Association and Linkage Analysis of Aluminum Tolerance Genes in Maize

    Get PDF
    Aluminum (Al) toxicity is a major worldwide constraint to crop productivity on acidic soils. Al becomes soluble at low pH, inhibiting root growth and severely reducing yields. Maize is an important staple food and commodity crop in acidic soil regions, especially in South America and Africa where these soils are very common. Al exclusion and intracellular tolerance have been suggested as two important mechanisms for Al tolerance in maize, but little is known about the underlying genetics. linkage populations with approximately 200 individuals each were used to study genetic variation in this complex trait. Al tolerance was measured as net root growth in nutrient solution under Al stress, which exhibited a wide range of variation between lines. Comparative and physiological genomics-based approaches were used to select 21 candidate genes for evaluation by association analysis.). These four candidate genes are high priority subjects for follow-up biochemical and physiological studies on the mechanisms of Al tolerance in maize. Immediately, elite haplotype-specific molecular markers can be developed for these four genes and used for efficient marker-assisted selection of superior alleles in Al tolerance maize breeding programs
    • …
    corecore