225 research outputs found
Application of block Krylov subspace algorithms to the Wilson-Dirac equation with multiple right-hand sides in lattice QCD
It is well known that the block Krylov subspace solvers work efficiently for
some cases of the solution of differential equations with multiple right-hand
sides. In lattice QCD calculation of physical quantities on a given
configuration demands us to solve the Dirac equation with multiple sources. We
show that a new block Krylov subspace algorithm recently proposed by the
authors reduces the computational cost significantly without loosing numerical
accuracy for the solution of the O(a)-improved Wilson-Dirac equation.Comment: 12 pages, 5 figure
Forecasting Particulate Matter Concentrations: Use of Unorganized Machines
Air pollution is an environmental issue studied worldwide, as it has serious impacts on human health. Therefore, forecasting its concentration is of great importance. Then, this study presents an analysis comprising the appliance of Unorganized Machines – Extreme Learning Machines (ELM) and Echo State Networks (ESN) aiming to predict particulate matter with aerodynamic diameter less than 2.5 m (PM2.5) and less than 10 m (PM10). The databases were from Kallio and Vallilla stations in Helsinki, Finland. The computational results showed that the ELM presented best results to PM2.5, while the ESN achieved the best performance to PM10
Effect of Climatic Precession on Dansgaard-Oeschger-Like Oscillations
Using the climate model MIROC4m, we simulate self-sustained oscillations of millennial-scale periodicity in the climate and Atlantic meridional overturning circulation under glacial conditions. We show two cases of extreme climatic precession and examine the mechanism of these oscillations. When the climatic precession corresponds to strong (weak) boreal seasonality, the period of the oscillation is about 1,500 (3,000) years. During the stadial, hot (cool) summer conditions in the Northern Hemisphere contribute to thin (thick) sea ice, which covers the deep convection sites, triggering early (late) abrupt climate change. During the interstadial, as sea ice is thin (thick), cold deep-water forms and cools the subsurface quickly (slowly), which influences the stratification of the North Atlantic Ocean. We show that the oscillations are explained by the internal feedbacks of the atmosphere-sea ice-ocean system, especially subsurface ocean temperature change and salt advection feedback with a positive feedback between the subpolar gyre and deep convection
Mineral maturity and crystallinity index are distinct characteristics of bone mineral
The purpose of this study was to test the hypothesis that mineral maturity and crystallinity index are two different characteristics of bone mineral. To this end, Fourier transform infrared microspectroscopy (FTIRM) was used. To test our hypothesis, synthetic apatites and human bone samples were used for the validation of the two parameters using FTIRM. Iliac crest samples from seven human controls and two with skeletal fluorosis were analyzed at the bone structural unit (BSU) level by FTIRM on sections 2–4 lm thick. Mineral maturity and crystallinity index were highly correlated in synthetic apatites but poorly correlated in normal human bone. In skeletal fluorosis, crystallinity index was increased and maturity decreased, supporting the fact of separate measurement of these two parameters. Moreover, results obtained in fluorosis suggested that mineral characteristics can be modified independently of bone remodeling. In conclusion, mineral maturity and crystallinity index are two different parameters measured separately by FTIRM and offering new perspectives to assess bone mineral traits in osteoporosis
Phospholipase C-ε Regulates Epidermal Morphogenesis in Caenorhabditis elegans
Migration of cells within epithelial sheets is an important feature of embryogenesis and other biological processes. Previous work has demonstrated a role for inositol 1,4,5-trisphosphate (IP3)-mediated calcium signalling in the rearrangement of epidermal cells (also known as hypodermal cells) during embryonic morphogenesis in Caenorhabditis elegans. However the mechanism by which IP3 production is stimulated is unknown. IP3 is produced by the action of phospholipase C (PLC). We therefore surveyed the PLC family of C. elegans using RNAi and mutant strains, and found that depletion of PLC-1/PLC-ε produced substantial embryonic lethality. We used the epithelial cell marker ajm-1::gfp to follow the behaviour of epidermal cells and found that 96% of the arrested embryos have morphogenetic defects. These defects include defective ventral enclosure and aberrant dorsal intercalation. Using time-lapse confocal microscopy we show that the migration of the ventral epidermal cells, especially of the leading cells, is slower and often fails in plc-1(tm753) embryos. As a consequence plc-1 loss of function results in ruptured embryos with a Gex phenotype (gut on exterior) and lumpy larvae. Thus PLC-1 is involved in the regulation of morphogenesis. Genetic studies using gain- and loss-of-function alleles of itr-1, the gene encoding the IP3 receptor in C. elegans, demonstrate that PLC-1 acts through ITR-1. Using RNAi and double mutants to deplete the other PLCs in a plc-1 background, we show that PLC-3/PLC-γ and EGL-8/PLC-β can compensate for reduced PLC-1 activity. Our work places PLC-ε into a pathway controlling epidermal cell migration, thus establishing a novel role for PLC-ε
Neuropathic Pain Phenotype Does Not Involve the NLRP3 Inflammasome and Its End Product Interleukin-1β in the Mice Spared Nerve Injury Model.
The NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome is one of the main sources of interleukin-1β (IL-1β) and is involved in several inflammatory-related pathologies. To date, its relationship with pain has not been studied in depth. The aim of our study was to elucidate the role of NLRP3 inflammasome and IL-1β production on neuropathic pain. Results showed that basal pain sensitivity is unaltered in NLRP3-/- mice as well as responses to formalin test. Spared nerve injury (SNI) surgery induced the development of mechanical allodynia and thermal hyperalgesia in a similar way in both genotypes and did not modify mRNA levels of the NLRP3 inflammasome components in the spinal cord. Intrathecal lipopolysaccharide (LPS) injection increases apoptosis-associated speck like protein (ASC), caspase-1 and IL-1β expression in both wildtype and NLRP3-/- mice. Those data suggest that NLRP3 is not involved in neuropathic pain and also that other sources of IL-1β are implicated in neuroinflammatory responses induced by LPS
- …