24,214 research outputs found

    Differential rotation in early type stars

    Get PDF
    Using 2D models of rotating stars, the interferometric measurements of alpha Eri and its fundamental parameters corrected for gravitational darkening effects we infer that the star might have a core rotating 2.7 times faster than the surface. We explore the consequences on spectral lines produced by surface differential rotation combined with the effects due to a kind of internal differential rotation with rotational energies higher than allowed for rigid rotation which induce geometrical deformations that do not distinguish strongly from those carried by the rigid rotation.Comment: 3 pages ; to appear in the proceedings of the Sapporo meeting on active OB stars ; ASP Conference Series ; eds: S. Stefl, S. Owocki and A. Okazak

    The Role of the Family in Immigrants' Labor-Market Activity: Evidence from the United States

    Get PDF
    We use Census of Population microdata for 1980 and 1990 to examine the labor supply and wages of immigrant husbands and wives in the United States in a family context. Earlier research by Baker and Benjamin (1997) posits a family investment model in which, upon arrival, immigrant husbands invest in their human capital while immigrant wives work to provide the family with liquidity during this period. Consistent with this model, they find for Canada that immigrant wives work longer hours upon arrival than comparable natives, but, with time in Canada, they are eventually overtaken by native wives. In contrast, we find that, among immigrants to the United States, both husbands and wives work and earn less than comparable natives upon arrival, with similar shortfalls for men and women. Further, both immigrant husbands and wives have similar, positive assimilation profiles in wages and labor supply and eventually overtake both the wages and the labor supply of comparable natives.

    T1ρ-based fibril-reinforced poroviscoelastic constitutive relation of human articular cartilage using inverse finite element technology

    Get PDF
    BackgroundMapping of T1ρ relaxation time is a quantitative magnetic resonance (MR) method and is frequently used for analyzing microstructural and compositional changes in cartilage tissues. However, there is still a lack of study investigating the link between T1ρ relaxation time and a feasible constitutive relation of cartilage which can be used to model complicated mechanical behaviors of cartilage accurately and properly.MethodsThree-dimensional finite element (FE) models of ten in vitro human tibial cartilage samples were reconstructed such that each element was assigned by material-level parameters, which were determined by a corresponding T1ρ value from MR maps. A T1ρ-based fibril-reinforced poroviscoelastic (FRPE) constitutive relation for human cartilage was developed through an inverse FE optimization technique between the experimental and simulated indentations.ResultsA two-parameter exponential relationship was obtained between the T1ρ and the volume fraction of the hydrated solid matrix in the T1ρ-based FRPE constitutive relation. Compared with the common FRPE constitutive relation (i.e., without T1ρ), the T1ρ-based FRPE constitutive relation indicated similar indentation depth results but revealed some different local changes of the stress distribution in cartilages.ConclusionsOur results suggested that the T1ρ-based FRPE constitutive relation may improve the detection of changes in the heterogeneous, anisotropic, and nonlinear mechanical properties of human cartilage tissues associated with joint pathologies such as osteoarthritis (OA). Incorporating T1ρ relaxation time will provide a more precise assessment of human cartilage based on the individual in vivo MR quantification

    Critical study of the distribution of rotational velocities of Be stars; II: Differential rotation and some hidden effects interfering with the interpretation of the Vsin i parameter

    Get PDF
    We assume that stars may undergo surface differential rotation to study its impact on the interpretation of V ⁣sin⁥iV\!\sin i and on the observed distribution Ί(u)\Phi(u) of ratios of true rotational velocities u=V/V_\rm c (V_\rm c is the equatorial critical velocity). We discuss some phenomena affecting the formation of spectral lines and their broadening, which can obliterate the information carried by V ⁣sin⁥iV\!\sin i concerning the actual stellar rotation. We studied the line broadening produced by several differential rotational laws, but adopted Maunder's expression Ω(Ξ)=Ωo(1+αcos⁥2Ξ)\Omega(\theta)=\Omega_o(1+\alpha\cos^2\theta) as an attempt to account for all of these laws with the lowest possible number of free parameters. We studied the effect of the differential rotation parameter α\alpha on the measured V ⁣sin⁥iV\!\sin i parameter and on the distribution Ί(u)\Phi(u) of ratios u=V/V_\rm c. We conclude that the inferred V ⁣sin⁥iV\!\sin i is smaller than implied by the actual equatorial linear rotation velocity V_\rm eq if the stars rotate with α0\alpha0. For a given ∣α∣|\alpha| the deviations of V ⁣sin⁥iV\!\sin i are larger when α<0\alpha<0. If the studied Be stars have on average α<0\alpha<0, the number of rotators with V_\rm eq\simeq0.9V_\rm c is larger than expected from the observed distribution Ί(u)\Phi(u); if these stars have on average α>0\alpha>0, this number is lower than expected. We discuss seven phenomena that contribute either to narrow or broaden spectral lines, which blur the information on the rotation carried by V ⁣sin⁥iV\!\sin i and, in particular, to decide whether the Be phenomenon mostly rely on the critical rotation. We show that two-dimensional radiation transfer calculations are needed in rapid rotators to diagnose the stellar rotation more reliably.Comment: To appear in A&

    Antibonding Ground state of Adatom Molecules in Bulk Dirac Semimetals

    Get PDF
    The ground state of the diatomic molecules in nature is inevitably bonding, and its first excited state is antibonding. We demonstrate theoretically that, for a pair of distant adatoms placed buried in three-dimensional-Dirac semimetals, this natural order of the states can be reversed and an antibonding ground state occurs at the lowest energy of the so-called bound states in the continuum. We propose an experimental protocol with the use of a scanning tunneling microscope tip to visualize the topographic map of the local density of states on the surface of the system to reveal the emerging physics

    Raman frequency shift in oxygen functionalized carbon nanotubes

    Full text link
    In terms of lattice dynamics theory, we study the vibrational properties of the oxygen-functionalized single wall carbon nanotubes (O-SWCNs). Due to the C-O and O-O interactions, many degenerate phonon modes are split and even some new phonon modes are obtained, different from the bare SWCNs. A distinct Raman shift is found in both the radial breathing mode and G modes, depending not only on the tube diameter and chirality but also on oxygen coverage and adsorption configurations. With the oxygen coverage increasing, interesting, a nonmonotonic up- and down-shift is observed in G modes, which is contributed to the competition between the bond expansion and contraction, there coexisting in the functionalized carbon nanotube.Comment: 4 pages, 3 figures, 1 tabl
    • 

    corecore