59 research outputs found

    Randomised prospective trial to assess the clinical utility of multianalyte assay panel with complement activation products for the diagnosis of SLE.

    Get PDF
    Objective: We compared the physician-assessed diagnostic likelihood of SLE resulting from standard diagnosis laboratory testing (SDLT) to that resulting from multianalyte assay panel (MAP) with cell-bound complement activation products (MAP/CB-CAPs), which reports a two-tiered index test result having 80% sensitivity and 86% specificity for SLE. Methods: Patients (n=145) with a history of positive antinuclear antibody status were evaluated clinically by rheumatologists and randomised to SDLT arm (tests ordered at the discretion of the rheumatologists) or to MAP/CB-CAPs testing arm. The primary endpoint was based on the change in the physician likelihood of SLE on a five-point Likert scale collected before and after testing. Changes in pharmacological treatment based on laboratory results were assessed in both arms. Statistical analysis consisted of Wilcoxon and Fisher\u27s exact tests. Results: At enrolment, patients randomised to SDLT (n=73, age=48±2 years, 94% females) and MAP/CB-CAPs testing arms (n=72, 50±2 years, 93% females) presented with similar pretest likelihood of SLE (1.42±0.06 vs 1.46±0.06 points, respectively; p=0.68). Post-test likelihood of SLE resulting from randomisation in the MAP/CB-CAPs testing arm was significantly lower than that resulting from randomisation to SDLT arm on review of test results (-0.44±0.10 points vs -0.19±0.07 points) and at the 12-week follow-up visit (-0.61±0.10 points vs -0.31±0.10 points) (p Conclusion: Our data suggest that MAP/CB-CAPs testing has clinical utility in facilitating SLE diagnosis and treatment decisions

    Men, rheumatoid arthritis, psychosocial impact and self-management: A narrative review.

    Get PDF
    Rheumatoid arthritis (RA) is a chronic disease affecting fewer men than women. We systematically reviewed the literature on impact and self-management of RA men. Twenty eight papers were included, and grouped into two categories: Psychosocial impact of RA; and Coping and self-management. This review finds gender differences relating to quality of life; work; distress; self-management; coping; and support. We conclude there is a dearth of literature focussing on RA men only, and mixed gender studies include insufficient men to draw strong conclusions about men. Thus, further research is needed to understand the support needs of men with RA in depth

    Crystal Structure Analysis Reveals Functional Flexibility in the Selenocysteine-Specific tRNA from Mouse

    Get PDF
    Selenocysteine tRNAs (tRNA(Sec)) exhibit a number of unique identity elements that are recognized specifically by proteins of the selenocysteine biosynthetic pathways and decoding machineries. Presently, these identity elements and the mechanisms by which they are interpreted by tRNA(Sec)-interacting factors are incompletely understood.We applied rational mutagenesis to obtain well diffracting crystals of murine tRNA(Sec). tRNA(Sec) lacking the single-stranded 3'-acceptor end ((ΔGCCA)RNA(Sec)) yielded a crystal structure at 2.0 Å resolution. The global structure of (ΔGCCA)RNA(Sec) resembles the structure of human tRNA(Sec) determined at 3.1 Å resolution. Structural comparisons revealed flexible regions in tRNA(Sec) used for induced fit binding to selenophosphate synthetase. Water molecules located in the present structure were involved in the stabilization of two alternative conformations of the anticodon stem-loop. Modeling of a 2'-O-methylated ribose at position U34 of the anticodon loop as found in a sub-population of tRNA(Sec)in vivo showed how this modification favors an anticodon loop conformation that is functional during decoding on the ribosome. Soaking of crystals in Mn(2+)-containing buffer revealed eight potential divalent metal ion binding sites but the located metal ions did not significantly stabilize specific structural features of tRNA(Sec).We provide the most highly resolved structure of a tRNA(Sec) molecule to date and assessed the influence of water molecules and metal ions on the molecule's conformation and dynamics. Our results suggest how conformational changes of tRNA(Sec) support its interaction with proteins

    A Scalable System for Production of Functional Pancreatic Progenitors from Human Embryonic Stem Cells

    Get PDF
    Development of a human embryonic stem cell (hESC)-based therapy for type 1 diabetes will require the translation of proof-of-principle concepts into a scalable, controlled, and regulated cell manufacturing process. We have previously demonstrated that hESC can be directed to differentiate into pancreatic progenitors that mature into functional glucose-responsive, insulin-secreting cells in vivo. In this study we describe hESC expansion and banking methods and a suspension-based differentiation system, which together underpin an integrated scalable manufacturing process for producing pancreatic progenitors. This system has been optimized for the CyT49 cell line. Accordingly, qualified large-scale single-cell master and working cGMP cell banks of CyT49 have been generated to provide a virtually unlimited starting resource for manufacturing. Upon thaw from these banks, we expanded CyT49 for two weeks in an adherent culture format that achieves 50–100 fold expansion per week. Undifferentiated CyT49 were then aggregated into clusters in dynamic rotational suspension culture, followed by differentiation en masse for two weeks with a four-stage protocol. Numerous scaled differentiation runs generated reproducible and defined population compositions highly enriched for pancreatic cell lineages, as shown by examining mRNA expression at each stage of differentiation and flow cytometry of the final population. Islet-like tissue containing glucose-responsive, insulin-secreting cells was generated upon implantation into mice. By four- to five-months post-engraftment, mature neo-pancreatic tissue was sufficient to protect against streptozotocin (STZ)-induced hyperglycemia. In summary, we have developed a tractable manufacturing process for the generation of functional pancreatic progenitors from hESC on a scale amenable to clinical entry

    Structural insights into RNA-dependent eukaryal and archaeal selenocysteine formation

    No full text
    The micronutrient selenium is present in proteins as selenocysteine (Sec). In eukaryotes and archaea, Sec is formed in a tRNA-dependent conversion of O-phosphoserine (Sep) by O-phosphoseryl-tRNA:selenocysteinyl-tRNA synthase (SepSecS). Here, we present the crystal structure of Methanococcus maripaludis SepSecS complexed with PLP at 2.5 angstrom resolution. SepSecS, a member of the Fold Type I PLP enzyme family, forms an (alpha(2))(2) homotetramer through its N-terminal extension. The active site lies on the dimer interface with each monomer contributing essential residues. In contrast to other Fold Type I PLP enzymes, Asn247 in SepSecS replaces the conserved Asp in binding the pyridinium nitrogen of PLP. A structural comparison with Escherichia coli selenocysteine lyase allowed construction of a model of Sep binding to the SepSecS catalytic site. Mutations of three conserved active site arginines (Arg72, Arg94, Arg307), protruding from the neighboring subunit, led to loss of in vivo and in vitro activity. The lack of active site cysteines demonstrates that a perselenide is not involved in SepSecS-catalyzed Sec formation; instead, the conserved arginines may facilitate the selenation reaction. Structural phylogeny shows that SepSecS evolved early in the history of PLP enzymes, and indicates that tRNA-dependent Sec formation is a primordial process
    • …
    corecore