38 research outputs found

    Telosentis exiguus (von Linstow, 1901) (Palaeacanthocephala: Illiosentidae), a generalist parasite of fishes in the Mediterranean basin

    Get PDF
    The morphology of material of the acanthocephalan genus Telosentis van Cleave, 1923 from different parts of the Mediterranean basin is examined in order to assess the validity of T. molini van Cleave, 1923. A redescription of T. exiguus, a generalist species of fishes in the Mediterranean basin, is presented especially in relation to the number of proboscis hooks. The main characteristic of T. exiguus is a cylindrical or club-shaped proboscis, which is covered with 12 longitudinal rows of 14–19 hooks in males and 16–20 in females. Males and females differ in both body size and the number of proboscis hooks. T. molini is considered a junior synonym of T. exiguus. A key to the species of Telosentis is presented

    A review of selected indicators of particle, nutrient and metal inputs in coral reef lagoon systems

    Get PDF
    This review presents environmental and biological indicators of the impact of three major categories of inputs in coral reef lagoons i.e. particles, nutrients and metals. Information was synthesized to extract well established indicators together with some interesting new concepts currently under development, and to provide the reader with an assessment of their respective advantages and drawbacks. The paper has been organized according to the capacity of three categories of indicators to respond either in a specific or a non specific way to a given source of input. The first section focuses on abiotic indicators which main interest is to respond instantaneously and in a truly specific way to a given source of input. The second and third sections present informations on bioindicators either at the sub-individual level or at the individual to community level, indicator specificity generally decreasing as a direct function of biological or ecological complexity. This review showed that even though significant work has already been done on coral reef ecosystems, much more scientific studies are still needed to answer the growing local demands for simple and truly validated tools to be used in environmental surveys. It is further stressed that, due to the biological and environmental diversity of coral reef lagoons, a preliminary step of on-site validation must be considered as an absolute prerequisite when indicators are planned to be used in the frame of a local environmental monitoring programme

    Patterns of co-speciation and host switching in primate malaria parasites

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The evolutionary history of many parasites is dependent on the evolution of their hosts, leading to an association between host and parasite phylogenies. However, frequent host switches across broad phylogenetic distances may weaken this close evolutionary link, especially when vectors are involved in parasites transmission, as is the case for malaria pathogens. Several studies suggested that the evolution of the primate-infective malaria lineages may be constrained by the phylogenetic relationships of their hosts, and that lateral switches between distantly related hosts may have been occurred. However, no systematic analysis has been quantified the degree of phylogenetic association between primates and their malaria parasites.</p> <p>Methods</p> <p>Here phylogenetic approaches have been used to discriminate statistically between events due to co-divergence, duplication, extinction and host switches that can potentially cause historical association between <it>Plasmodium </it>parasites and their primate hosts. A Bayesian reconstruction of parasite phylogeny based on genetic information for six genes served as basis for the analyses, which could account for uncertainties about the evolutionary hypotheses of malaria parasites.</p> <p>Results</p> <p>Related lineages of primate-infective <it>Plasmodium </it>tend to infect hosts within the same taxonomic family. Different analyses testing for congruence between host and parasite phylogenies unanimously revealed a significant association between the corresponding evolutionary trees. The most important factor that resulted in this association was host switching, but depending on the parasite phylogeny considered, co-speciation and duplication may have also played some additional role. Sorting seemed to be a relatively infrequent event, and can occur only under extreme co-evolutionary scenarios. The concordance between host and parasite phylogenies is heterogeneous: while the evolution of some malaria pathogens is strongly dependent on the phylogenetic history of their primate hosts, the congruent evolution is less emphasized for other parasite lineages (e.g. for human malaria parasites). Estimation of ancestral states of host use along the phylogenetic tree of parasites revealed that lateral transfers across distantly related hosts were likely to occur in several cases. Parasites cannot infect all available hosts, and they should preferentially infect hosts that provide a similar environment for reproduction. Marginally significant evidence suggested that there might be a consistent variation within host ranges in terms of physiology.</p> <p>Conclusion</p> <p>The evolution of primate malarias is constrained by the phylogenetic associations of their hosts. Some parasites can preserve a great flexibility to infect hosts across a large phylogenetic distance, thus host switching can be an important factor in mediating host ranges observed in nature. Due to this inherent flexibility and the potential exposure to various vectors, the emergence of new malaria disease in primates including humans cannot be predicted from the phylogeny of parasites.</p

    Ecologia y diversidad de lianas en la Selva Pedemontana de las Yungas Australes

    No full text
    La Selva Pedemontana presenta la mayor diversidad de lianas de las Yungas australes. A escala regional, existe más información para el sector argentino que para el boliviano. En el noroeste de Argentina, se registraron 89 especies, 51 géneros y 22 familias, siendo sapindáceas, bignoniáceas, malpigiáceas y fabáceas las que presentaron el mayor número de especies. En el gradiente altitudinal, el 71% de las especies estuvieron muy bien representadas en esta franja, y las restantes ingresaron desde las áreas chaqueñas (16%) y montanas (13%), siendo el 25% de las especies exclusivas de esta selva. En el gradiente latitudinal, el 95% de las especies ocurrieron en el sector norte (Jujuy y norte de Salta), con más del 50% de especies exclusivas, mientras que un 40% se encontraron en el sector sur (sur de Salta y Tucumán), con el 5% exclusivo. El mecanismo de trepado más común fue el prensil (45%) seguido por las espiras (30%) y ramas apoyantes (25%). La floración ocurrió durante los meses de mayores precipitaciones (diciembre a febrero). Las especies con frutos carnosos fueron dispersadas a finales de la época lluviosa (marzo–abril) y las especies con frutos secos fueron dispersadas durante la época seca (junio–julio). A escala de paisaje, las lianas fueron más abundantes en bosques con árboles grandes (\u3e50 cm diámetro a la altura del pecho) y dosel bajo. Estas características implicarían condiciones favorables para el establecimiento y proliferación de lianas, incluyendo la ausencia de fuegos severos y la presencia de microambientes iluminados dentro del bosque. A escala liana–árbol huésped (local), las características arbóreas (e. g., tamaño, fenología) tuvieron un rol menor sobre la abundancia de lianas. No obstante, las lianas estuvieron fuertemente agregadas sobre los árboles huéspedes sugiriendo un proceso de facilitación entre ellas

    Host range dynamics at different scales: host use by a hemiparasite across its geographic distribution

    No full text
    The complexity of natural communities is the result of interactions among species that coexist within them. Parasitic interactions are among the most common species interaction types, and analysis of parasite–host ranges can advance understanding of how host–parasite pairs structure community interactions across their geographic distributions. Using network analysis and host preference relative index, we analysed host use by the South American mistletoe, Tristerix corymbosus (Loranthaceae), in 22 localities among two biomes: Chilean matorral and temperate forest. The total number of host species recorded was 27, and 40% of these species were non-native. The non-native Populus sp. was shared between biomes. There was a positive relationship between host range and potential host species richness at the studied localities. On average, the mistletoe parasitized each host species relative to its abundance. However, some host species in some localities are more parasitized than expected. Network structure showed a differences in host use between the two biomes: Aristotelia chilensis was central in the temperate forest, with Populus sp. in the Chilean matorral. Host use intensity in the Chilean matorral was higher for non-native species. Tristerix corymbosus has a wide host range and could be considered a generalist parasite across its full geographic distribution, but at local scales, host preferences differed among localities and are related to host coverage. Alterations in community composition, due to natural events or human activities, can modify the availability of possible hosts. Hence, the mistletoe with the described characteristics may be able to change its infection preference while maintaining the interaction functionality.Fil: Atencio, Nelson Omar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina. Universidad Nacional del Comahue. Centro Regional Universitario Bariloche. Laboratorio de Ecotono; ArgentinaFil: Vidal Russell, Romina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina. Universidad Nacional del Comahue. Centro Regional Universitario Bariloche. Laboratorio de Ecotono; ArgentinaFil: Chacoff, Natacha Paola. Universidad Nacional de Tucumán. Instituto de Ecología Regional. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Ecología Regional; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Naturales e Instituto Miguel Lillo; ArgentinaFil: Amico, Guillermo Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina. Universidad Nacional del Comahue. Centro Regional Universitario Bariloche. Laboratorio de Ecotono; Argentin

    Forest and woodland replacement patterns following drought-related mortality

    Get PDF
    Forest vulnerability to drought is expected to increase under anthropogenic climate change, and drought-induced mortality and community dynamics following drought have major ecological and societal impacts. Here, we show that tree mortality concomitant with drought has led to short-term (mean 5 y, range 1 to 23 y after mortality) vegetation-type conversion in multiple biomes across the world (131 sites). Self-replacement of the dominant tree species was only prevalent in 21% of the examined cases and forests and woodlands shifted to nonwoody vegetation in 10% of them. The ultimate temporal persistence of such changes remains unknown but, given the key role of biological legacies in long-term ecological succession, this emerging picture of postdrought ecological trajectories highlights the potential for major ecosystem reorganization in the coming decades. Community changes were less pronounced under wetter postmortality conditions. Replacement was also influenced by management intensity, and postdrought shrub dominance was higher when pathogens acted as codrivers of tree mortality. Early change in community composition indicates that forests dominated by mesic species generally shifted toward more xeric communities, with replacing tree and shrub species exhibiting drier bioclimatic optima and distribution ranges. However, shifts toward more mesic communities also occurred and multiple pathways of forest replacement were observed for some species. Drought characteristics, species-specific environmental preferences, plant traits, and ecosystem legacies govern postdrought species turnover and subsequent ecological trajectories, with potential far-reaching implications for forest biodiversity and ecosystem services
    corecore