21 research outputs found
Rapid Etiological Classification of Meningitis by NMR Spectroscopy Based on Metabolite Profiles and Host Response
Bacterial meningitis is an acute disease with high mortality that is reduced by early treatment. Identification of the causative microorganism by culture is sensitive but slow. Large volumes of cerebrospinal fluid (CSF) are required to maximise sensitivity and establish a provisional diagnosis. We have utilised nuclear magnetic resonance (NMR) spectroscopy to rapidly characterise the biochemical profile of CSF from normal rats and animals with pneumococcal or cryptococcal meningitis. Use of a miniaturised capillary NMR system overcame limitations caused by small CSF volumes and low metabolite concentrations. The analysis of the complex NMR spectroscopic data by a supervised statistical classification strategy included major, minor and unidentified metabolites. Reproducible spectral profiles were generated within less than three minutes, and revealed differences in the relative amounts of glucose, lactate, citrate, amino acid residues, acetate and polyols in the three groups. Contributions from microbial metabolism and inflammatory cells were evident. The computerised statistical classification strategy is based on both major metabolites and minor, partially unidentified metabolites. This data analysis proved highly specific for diagnosis (100% specificity in the final validation set), provided those with visible blood contamination were excluded from analysis; 6-8% of samples were classified as indeterminate. This proof of principle study suggests that a rapid etiologic diagnosis of meningitis is possible without prior culture. The method can be fully automated and avoids delays due to processing and selective identification of specific pathogens that are inherent in DNA-based techniques
A large topographic feature on the surface of the trans-Neptunian object (307261) 2002 MS measured from stellar occultations
This work aims at constraining the size, shape, and geometric albedo of the
dwarf planet candidate 2002 MS4 through the analysis of nine stellar
occultation events. Using multichord detection, we also studied the object's
topography by analyzing the obtained limb and the residuals between observed
chords and the best-fitted ellipse. We predicted and organized the
observational campaigns of nine stellar occultations by 2002 MS4 between 2019
and 2022, resulting in two single-chord events, four double-chord detections,
and three events with three to up to sixty-one positive chords. Using 13
selected chords from the 8 August 2020 event, we determined the global
elliptical limb of 2002 MS4. The best-fitted ellipse, combined with the
object's rotational information from the literature, constrains the object's
size, shape, and albedo. Additionally, we developed a new method to
characterize topography features on the object's limb. The global limb has a
semi-major axis of 412 10 km, a semi-minor axis of 385 17 km, and
the position angle of the minor axis is 121 16. From
this instantaneous limb, we obtained 2002 MS4's geometric albedo and the
projected area-equivalent diameter. Significant deviations from the fitted
ellipse in the northernmost limb are detected from multiple sites highlighting
three distinct topographic features: one 11 km depth depression followed by a
25 km height elevation next to a crater-like depression with an
extension of 322 39 km and 45.1 1.5 km deep. Our results present an
object that is 138 km smaller in diameter than derived from thermal
data, possibly indicating the presence of a so-far unknown satellite. However,
within the error bars, the geometric albedo in the V-band agrees with the
results published in the literature, even with the radiometric-derived albedo
Hydrodeoxygenation of Phenolic Compounds by Sulfided (Co)Mo/Al2O3 Catalysts, a Combined Experimental and Theoretical Study
International audienceThe hydrodeoxygenation of model phenol compounds (phenol and 2-ethylphenol) was carried over unpromoted Mo/Al2O3 and promoted CoMo/Al2O3 catalysts. Hydrodeoxygenation proceeds by two pathways:â hydrogenation of the aromatic ring followed by Csp3-O bond cleavage (HYD pathway, (hydrogenation of the aromatic ring followed by Csp3-O bond cleavage));â direct cleavage of the Csp2-O bond (DDO Pathway).Both routes were favored by the presence of Co on the catalyst, while the presence of the alkyl substituent on the phenolic ring favors the DDO route but inhibits the HYD pathway. IR (InfraRed) spectroscopy shows that while phenol mostly dissociates on these catalysts, a significant fraction of 2-ethylphenol remains non dissociated. The adsorption energies of both reactants and possible reaction intermediates on promoted and non-promoted sulfide phases as computed by DFT (Density-Functional Theory) confirm these findings and allow rationalizing the catalytic activity trends observed experimentally
Effect of water on the stability of Mo and CoMo hydrodeoxygenation catalysts: A combined experimental and DFT study
International audienceWe report the study of the impact of water on the stability of Mo and CoMo sulfide catalysts in hydrodeoxygenation of phenolic compounds. The presence of water at reaction temperature leads to an additional deactivation of the catalyst, which is fully reversible on the CoMo catalyst, but partly irreversible on non-promoted Mo catalyst. IR and HRTEM characterizations as well as DFf simulations confirm the higher sensitivity of unpromoted MoS(2) toward water and show that large amounts of water at reaction temperature lead to the exchange of an important fraction of edge sulfur atoms on non-promoted MoS(2) catalysts, hence changing the nature of the active sites. For Co-promoted catalyst, the extent of water poisoning is much lower and reversible because Co atoms prevent sulfur-oxygen exchanges. Hence, in HDO conditions, Co does not only increase the intrinsic activity of the catalyst (promotion effect) but also stabilizes the active phase in the presence of water (passivation effect). (C) 2011 Elsevier Inc. All rights reserved