974 research outputs found

    Spontaneous Interlayer Charge Transfer near the Magnetic Quantum Limit

    Full text link
    Experiments reveal that a confined electron system with two equally-populated layers at zero magnetic field can spontaneously break this symmetry through an interlayer charge transfer near the magnetic quantum limit. New fractional quantum Hall states at unusual total filling factors such as \nu = 11/15 (= 1/3 + 2/5) stabilize as signatures that the system deforms itself, at substantial electrostatic energy cost, in order to gain crucial correlation energy by "locking in" separate incompressible liquid phases at unequal fillings in the two layers (e.g., layered 1/3 and 2/5 states in the case of \nu = 11/15).Comment: 4 pages, 4 figures (1 color) included in text. Related papers at http://www.ee.princeton.edu/~hari/papers.htm

    Evolution of Near-Sun Solar Wind Turbulence

    Full text link
    This paper presents a preliminary analysis of the turbulence spectrum of the solar wind in the near-Sun region R < 50 Rs, obtained from interplanetary scintillation measurements with the Ooty Radio Telescope at 327 MHz. The results clearly show that the scintillation is dominated by density irregularities of size about 100 - 500 km. The scintillation at the small-scale side of the spectrum, although significantly less in magnitude, has a flatter spectrum than the larger-scale dominant part. Furthermore, the spectral power contained in the flatter portion rapidly increases closer to the Sun. These results on the turbulence spectrum for R < 50 Rs quantify the evidence for radial evolution of the small-scale fluctuations (</= 50 km) generated by Alfven waves.Comment: 8 pages, 5 figures, To appear in "Magnetic Coupling between the Interior and the Atmosphere of the Sun", eds. S.S. Hasan and R.J. Rutten, Astrophysics and Space Science Proceedings, Springer-Verlag, Heidelberg, Berlin, 200

    Multiwavelength Study on Solar and Interplanetary Origins of the Strongest Geomagnetic Storm of Solar Cycle 23

    Full text link
    We study the solar sources of an intense geomagnetic storm of solar cycle 23 that occurred on 20 November 2003, based on ground- and space-based multiwavelength observations. The coronal mass ejections (CMEs) responsible for the above geomagnetic storm originated from the super-active region NOAA 10501. We investigate the H-alpha observations of the flare events made with a 15 cm solar tower telescope at ARIES, Nainital, India. The propagation characteristics of the CMEs have been derived from the three-dimensional images of the solar wind (i.e., density and speed) obtained from the interplanetary scintillation data, supplemented with other ground- and space-based measurements. The TRACE, SXI and H-alpha observations revealed two successive ejections (of speeds ~350 and ~100 km/s), originating from the same filament channel, which were associated with two high speed CMEs (~1223 and ~1660 km/s, respectively). These two ejections generated propagating fast shock waves (i.e., fast drifting type II radio bursts) in the corona. The interaction of these CMEs along the Sun-Earth line has led to the severity of the storm. According to our investigation, the interplanetary medium consisted of two merging magnetic clouds (MCs) that preserved their identity during their propagation. These magnetic clouds made the interplanetary magnetic field (IMF) southward for a long time, which reconnected with the geomagnetic field, resulting the super-storm (Dst_peak=-472 nT) on the Earth.Comment: 24 pages, 16 figures, Accepted for publication in Solar Physic

    Increased absorption by coarse aerosol particles over the Gangetic–Himalayan region

    Get PDF
    Each atmospheric aerosol type has distinctive light-absorption characteristics related to its physical/chemical properties. Climate models treat black carbon as the main light-absorbing component of carbonaceous atmospheric aerosols, while absorption by some organic aerosols is also considered, particularly at ultraviolet wavelengths. Most absorbing aerosols are assumed to be < 1 μm in diameter (sub-micron). Here we present results from a recent field study in India, primarily during the post-monsoon season (October–November), suggesting the presence of absorbing aerosols sized 1–10 μm. Absorption due to super-micron-sized particles was nearly 30% greater than that due to smaller particles. Periods of increased absorption by larger particles ranged from a week to a month. Radiative forcing calculations under clear-sky conditions show that super-micron particles account for nearly 44% of the total aerosol forcing. The origin of the large aerosols is unknown, but meteorological conditions indicate that they are of local origin. Such economic and habitation conditions exist throughout much of the developing world. Hence, large absorbing particles could be an important component of the regional-scale atmospheric energy balance

    Knowledge and attitude of medical students towards bioethics- A cross sectional study from a medical college in northern Tamil Nadu

    Get PDF
    Studies have shown that a significant proportion of healthcare professionals were unaware of the universally recognized bioethical principles. The study was conducted to assess the knowledge and attitude towards bioethics among undergraduate medical students of a Medical College and also to find out the association of knowledge and attitude towards bioethics with other factors. This was a Cross Sectional study conducted at a medical college of Chengalpattu district between April to September of 2019. Study participants included medical undergraduate students from second academic year to fourth academic year of the medical college who had clinical exposure. Data was collected from a total of 224 subjects using a pretested, self-administered questionnaire. 89.3% of the respondents had poor knowledge about medical ethics.  The prevalence of good+excellent knowledge about bioethics was highest among 17-19 years age group (95.8%) and least among &gt;22 (60%) years age group, highest among those with &lt;12 months of clinical exposure (100%) and least among those with 25-36 months of exposure (57.8%) and both these associations were found to be statistically significant by Chi square test. (P= 0.048 and &lt;0.001 respectively). Majority of the subjects (&gt;58%) had a favourable attitude towards the correct ethical practices with respect to most of the issues (11/15). However, majority of them (&gt;53.1%) also had a favorable attitude towards certain issues (4/15) which are debatable. The most preferred sources for learning about medical ethics were seminars (81.7%), clinical discussions (78.1%) and lectures (57.1%). Majority of the subjects had poor knowledge about bioethics. The knowledge was better among students of earlier years of course compared to those in the later part. Majority of the subjects had a favorable attitude towards the correct ethical practices in most of the cases. The most preferred sources for learning about medical ethics were seminars, clinical discussions and lecture

    Josephson Current in the Presence of a Precessing Spin

    Full text link
    The Josephson current in the presence of a precessing spin between various types of superconductors is studied. It is shown that the Josephson current flowing between two spin-singlet pairing superconductors is not modulated by the precession of the spin. When both superconductors have equal-spin-triplet pairing state, the flowing Josephson current is modulated with twice of the Larmor frequency by the precessing spin. It was also found that up to the second tunneling matrix elements, no Josephson current can occur with only a direct exchange interaction between the localized spin and the conduction electrons, if the two superconductors have different spin-parity pairing states.Comment: 5 pages, 1 figur

    Forbush decreases and turbulence levels at CME fronts

    Full text link
    We seek to estimate the average level of MHD turbulence near coronal mass ejection (CME) fronts as they propagate from the Sun to the Earth. We examine the cosmic ray data from the GRAPES-3 tracking muon telescope at Ooty, together with the data from other sources for three well observed Forbush decrease events. Each of these events are associated with frontside halo Coronal Mass Ejections (CMEs) and near-Earth magnetic clouds. In each case, we estimate the magnitude of the Forbush decrease using a simple model for the diffusion of high energy protons through the largely closed field lines enclosing the CME as it expands and propagates from the Sun to the Earth. We use estimates of the cross-field diffusion coefficient D⊥D_{\perp} derived from published results of extensive Monte Carlo simulations of cosmic rays propagating through turbulent magnetic fields. Our method helps constrain the ratio of energy density in the turbulent magnetic fields to that in the mean magnetic fields near the CME fronts. This ratio is found to be ∼\sim 2% for the 11 April 2001 Forbush decrease event, ∼\sim 6% for the 20 November 2003 Forbush decrease event and ∼\sim 249% for the much more energetic event of 29 October 2003.Comment: Accepted for publication in Astronomy and Astrophysics. (Abstract abridged) Typos correcte

    Shifting the quantum Hall plateau level in a double layer electron system

    Full text link
    We study the plateaux of the integer quantum Hall resistance in a bilayer electron system in tilted magnetic fields. In a narrow range of tilt angles and at certain magnetic fields, the plateau level deviates appreciably from the quantized value with no dissipative transport emerging. A qualitative account of the effect is given in terms of decoupling of the edge states corresponding to different electron layers/Landau levels.Comment: 3 pages, 3 figures include

    Quantum Holographic Encoding in a Two-dimensional Electron Gas

    Full text link
    The advent of bottom-up atomic manipulation heralded a new horizon for attainable information density, as it allowed a bit of information to be represented by a single atom. The discrete spacing between atoms in condensed matter has thus set a rigid limit on the maximum possible information density. While modern technologies are still far from this scale, all theoretical downscaling of devices terminates at this spatial limit. Here, however, we break this barrier with electronic quantum encoding scaled to subatomic densities. We use atomic manipulation to first construct open nanostructures--"molecular holograms"--which in turn concentrate information into a medium free of lattice constraints: the quantum states of a two-dimensional degenerate Fermi gas of electrons. The information embedded in the holograms is transcoded at even smaller length scales into an atomically uniform area of a copper surface, where it is densely projected into both two spatial degrees of freedom and a third holographic dimension mapped to energy. In analogy to optical volume holography, this requires precise amplitude and phase engineering of electron wavefunctions to assemble pages of information volumetrically. This data is read out by mapping the energy-resolved electron density of states with a scanning tunnelling microscope. As the projection and readout are both extremely near-field, and because we use native quantum states rather than an external beam, we are not limited by lensing or collimation and can create electronically projected objects with features as small as ~0.3 nm. These techniques reach unprecedented densities exceeding 20 bits/nm2 and place tens of bits into a single fermionic state.Comment: Published online 25 January 2009 in Nature Nanotechnology; 12 page manuscript (including 4 figures) + 2 page supplement (including 1 figure); supplementary movie available at http://mota.stanford.ed

    Quantum Interference between Impurities: Creating Novel Many-Body States in s-wave Superconductors

    Full text link
    We demonstrate that quantum interference of electronic waves that are scattered by multiple magnetic impurities in an s-wave superconductor gives rise to novel bound states. We predict that by varying the inter-impurity distance or the relative angle between the impurity spins, the states' quantum numbers, as well as their distinct frequency and spatial dependencies, can be altered. Finally, we show that the superconductor can be driven through multiple local crossovers in which its spin polarization, , changes between =0,1/2=0, 1/2 and 1.Comment: 4 pages, 4 figure
    • …
    corecore