1,505 research outputs found

    Sparse Coding on Stereo Video for Object Detection

    Get PDF
    Deep Convolutional Neural Networks (DCNN) require millions of labeled training examples for image classification and object detection tasks, which restrict these models to domains where such datasets are available. In this paper, we explore the use of unsupervised sparse coding applied to stereo-video data to help alleviate the need for large amounts of labeled data. We show that replacing a typical supervised convolutional layer with an unsupervised sparse-coding layer within a DCNN allows for better performance on a car detection task when only a limited number of labeled training examples is available. Furthermore, the network that incorporates sparse coding allows for more consistent performance over varying initializations and ordering of training examples when compared to a fully supervised DCNN. Finally, we compare activations between the unsupervised sparse-coding layer and the supervised convolutional layer, and show that the sparse representation exhibits an encoding that is depth selective, whereas encodings from the convolutional layer do not exhibit such selectivity. These result indicates promise for using unsupervised sparse-coding approaches in real-world computer vision tasks in domains with limited labeled training data

    Ultraviolet television data from the Orbiting Astronomical Observatory. 1: Instrumentation and analysis techniques for the celescope experiment

    Get PDF
    The celescope instrumentation and data analysis system is described, the major problems encountered during orbital operation are summerized, and a few major problems that were anticipated but did not materialize are listed

    Report of the Working Group on the Composition of Ultra High Energy Cosmic Rays

    Full text link
    For the first time a proper comparison of the average depth of shower maximum (XmaxX_{\rm max}) published by the Pierre Auger and Telescope Array Observatories is presented. The XmaxX_{\rm max} distributions measured by the Pierre Auger Observatory were fit using simulated events initiated by four primaries (proton, helium, nitrogen and iron). The primary abundances which best describe the Auger data were simulated through the Telescope Array (TA) Middle Drum (MD) fluorescence and surface detector array. The simulated events were analyzed by the TA Collaboration using the same procedure as applied to their data. The result is a simulated version of the Auger data as it would be observed by TA. This analysis allows a direct comparison of the evolution of ⟨Xmax⟩\langle X_{\rm max} \rangle with energy of both data sets. The ⟨Xmax⟩\langle X_{\rm max} \rangle measured by TA-MD is consistent with a preliminary simulation of the Auger data through the TA detector and the average difference between the two data sets was found to be (2.9±2.7  (stat.)±18  (syst.)) g/cm2(2.9 \pm 2.7\;(\text{stat.}) \pm 18\;(\text{syst.}))~\text{g/cm}^2.Comment: To appear in the Proceedings of the UHECR workshop, Springdale USA, 201

    Sparse Encoding of Binocular Images for Depth Inference

    Get PDF
    Sparse coding models have been widely used to decompose monocular images into linear combinations of small numbers of basis vectors drawn from an overcomplete set. However, little work has examined sparse coding in the context of stereopsis. In this paper, we demonstrate that sparse coding facilitates better depth inference with sparse activations than comparable feed-forward networks of the same size. This is likely due to the noise and redundancy of feed-forward activations, whereas sparse coding utilizes lateral competition to selectively encode image features within a narrow band of depths

    Determining the Magnetic Field Orientation of Coronal Mass Ejections from Faraday Rotation

    Full text link
    We describe a method to measure the magnetic field orientation of coronal mass ejections (CMEs) using Faraday rotation (FR). Two basic FR profiles, Gaussian-shaped with a single polarity or "N"-like with polarity reversals, are produced by a radio source occulted by a moving flux rope depending on its orientation. These curves are consistent with the Helios observations, providing evidence for the flux-rope geometry of CMEs. Many background radio sources can map CMEs in FR onto the sky. We demonstrate with a simple flux rope that the magnetic field orientation and helicity of the flux rope can be determined 2-3 days before it reaches Earth, which is of crucial importance for space weather forecasting. An FR calculation based on global magnetohydrodynamic (MHD) simulations of CMEs in a background heliosphere shows that FR mapping can also resolve a CME geometry curved back to the Sun. We discuss implementation of the method using data from the Mileura Widefield Array (MWA).Comment: 22 pages with 9 figures, accepted for publication in Astrophys.

    Assessing variability of wind speed: comparison and validation of 27 methodologies

    Get PDF
    Because wind resources vary from year to year, the intermonthly and interannual variability (IAV) of wind speed is a key component of the overall uncertainty in the wind resource assessment process, thereby creating challenges for wind farm operators and owners. We present a critical assessment of several common approaches for calculating variability by applying each of the methods to the same 37-year monthly wind-speed and energy-production time series to highlight the differences between these methods. We then assess the accuracy of the variability calculations by correlating the wind-speed variability estimates to the variabilities of actual wind farm energy production. We recommend the robust coefficient of variation (RCoV) for systematically estimating variability, and we underscore its advantages as well as the importance of using a statistically robust and resistant method. Using normalized spread metrics, including RCoV, high variability of monthly mean wind speeds at a location effectively denotes strong fluctuations of monthly total energy generation, and vice versa. Meanwhile, the wind-speed IAVs computed with annual-mean data fail to adequately represent energy-production IAVs of wind farms. Finally, we find that estimates of energy-generation variability require 10±3 years of monthly mean wind-speed records to achieve a 90&thinsp;% statistical confidence. This paper also provides guidance on the spatial distribution of wind-speed RCoV.</p

    National Geodetic Satellite Program, Part II: Smithsonian Astrophysical Observatory

    Get PDF
    A sequence of advances in the determination of geodetic parameters presented by the Smithsonian Astrophysical Observatory are described. A Baker-Nunn photographic system was used in addition to a ruby-laser ranging system to obtain data for refinement of geodetic parameters. A summary of the data employed to: (1) derive coordinates for the locations of various tracking stations; and (2) determine the gravitational potential of the earth, is presented

    A model for transition of 5 '-nuclease domain of DNA polymerase I from inert to active modes

    Get PDF
    Bacteria contain DNA polymerase I (PolI), a single polypeptide chain consisting of similar to 930 residues, possessing DNA-dependent DNA polymerase, 3'-5' proofreading and 5'-3' exonuclease (also known as flap endonuclease) activities. PolI is particularly important in the processing of Okazaki fragments generated during lagging strand replication and must ultimately produce a double-stranded substrate with a nick suitable for DNA ligase to seal. PolI's activities must be highly coordinated both temporally and spatially otherwise uncontrolled 5'-nuclease activity could attack a nick and produce extended gaps leading to potentially lethal double-strand breaks. To investigate the mechanism of how PolI efficiently produces these nicks, we present theoretical studies on the dynamics of two possible scenarios or models. In one the flap DNA substrate can transit from the polymerase active site to the 5'-nuclease active site, with the relative position of the two active sites being kept fixed; while the other is that the 5'-nuclease domain can transit from the inactive mode, with the 5'-nuclease active site distant from the cleavage site on the DNA substrate, to the active mode, where the active site and substrate cleavage site are juxtaposed. The theoretical results based on the former scenario are inconsistent with the available experimental data that indicated that the majority of 5'-nucleolytic processing events are carried out by the same PolI molecule that has just extended the upstream primer terminus. By contrast, the theoretical results on the latter model, which is constructed based on available structural studies, are consistent with the experimental data. We thus conclude that the latter model rather than the former one is reasonable to describe the cooperation of the PolI's polymerase and 5'-3' exonuclease activities. Moreover, predicted results for the latter model are presented
    • …
    corecore