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Sparse Encoding of Binocular Images for Depth
Inference
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Dylan M. Paiton

Redwood Center
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Abstract—Sparse coding models have been widely used to
decompose monocular images into linear combinations of small
numbers of basis vectors drawn from an overcomplete set.
However, little work has examined sparse coding in the context
of stereopsis. In this paper, we demonstrate that sparse coding
facilitates better depth inference with sparse activations than
comparable feed-forward networks of the same size. This is likely
due to the noise and redundancy of feed-forward activations,
whereas sparse coding utilizes lateral competition to selectively
encode image features within a narrow band of depths.

Index Terms—Sparse coding, stereopsis, depth inference.

I. INTRODUCTION

Sparse coding models encode natural image patches in a
nonlinear manner using an overcomplete set of basis vectors
(or dictionary elements) weighted by a sparse vector of ac-
tivation coefficients [1]. The basis vectors are optimized to
maximize sparsity and minimize reconstruction error. When
applied to natural image patches, lateral competition inherent
in sparse coding creates a compact encoding. Optimizing a
basis for sparse reconstruction results in a basis that emulate
linear receptive field properties of V1 simple cells, such as
edge and luminance elements, corresponding to the basic prim-
itives of natural scenes. Additionally, the competition inherent
in sparse coding can account for nonlinear receptive field
properties recorded from V1 simple cells, such as end-stopping
and contrast-invariant orientation tuning [2], properties that are
likely to assist subsequent visual processing.

While sparse coding models have been extensively re-
searched for monocular images, little work has been done
to investigate how such a model can help in the domain of
stereoscopic sensing. Specifically, we are interested in deter-
mining if unsupervised sparse coding techniques allow for an
encoding better suited for depth inference as compared to other
approaches based on local features. Here, depth inference is
defined as estimating the distance from stereo cameras at pixel
resolution. Most previous attempts to determine depth from
local features have been purely feed-forward [3, 4, 5]. While
feed-forward encoding strategies have achieved much success
in monocular computer vision tasks, we show that a similar
strategy in the context of stereopsis poorly encodes binocular
images for depth inference due to redundant hidden-layer
activations. In contrast, our model uses lateral competition
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among basis vectors to encode binocular images sparsely.
Specifically, we expect that only those basis vectors that are
both well-matched to the local binocular disparity and also
contribute to the overall stereo representation will compete
effectively. Here, our goal was not to achieve state-of-the-art
depth inference, but rather explicitly investigate the role of
lateral competition in sparse coding when compared to more
traditional feed-forward networks. We demonstrate that sparse
coding facilitates better depth inference with sparse activations
than comparable feed-forward networks of the same size.

A. Related work

The standard approach to inferring depth is to match local
image patches with some metric of similarity [6]. In contrast,
our work focuses on a more neurally plausible approach in
which we encode stereo image pairs in the form of corre-
sponding binocular local image patches.

Memisevic et al. encodes stereo images through local
patches via a Restricted Boltzmann Machine [7]. While the
authors allow for inhibitory connections, which can be in-
terpreted as a form of competition, our work explicitly tests
competition and how it affects encoding of binocular images.
Furthermore, rather than using synthetic images as in [7],
we attempt to work within the restrictions of natural scene
datasets.

Hoyer et al. extracted binocular image features using in-
dependent component analysis (ICA) [4]. Here, the authors
assume disparity to be a horizontal translation between the
left and right eyes. This allowed them to generate datasets
with artificial disparities by translating stereo image patches
horizontally relative to each other. In contrast, we relax this
assumption and focus on encoding natural stereo scenes as
presented.

II. SPARSE CONVOLUTIONAL ARTIFICIAL NEURAL

NETWORK (SCANN)

A. Encoding binocular features

Sparse coding on monocular input can be defined as follows:
given an overcomplete dictionary of N basis vectors, ®, we
aim to minimize the energy function:
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Here, G(I,®,A) corresponds to the residual: the input
image vector I (vector of length M pixels) minus the recon-
struction. The network attempts to reconstruct the input image
from a linear sum of the N basis vectors ¢ (vector of length
M pixels) in @ (matrix of size NxM), weighted by a sparse
vector of activation coefficients a in A (vector of length NV
elements), with A as a tradeoff parameter between error and
sparsity. For a sparsity constraint, we use an [,-norm with a
p value very close to 1.

Here, we extend the concept of sparse coding to binocular
images. In typical sparse coding, one activation coefficient
is associated with one basis vector that contributes to the
reconstruction of a single input. In the case of stereopsis,
each coefficient activates two linked basis vectors, such that
the model simultaneously attempts to reconstruct both left and
right camera views. Formally, our energy function (equation
1) is extended to

E =2 (160, ®, A)3 + G(Tn, @5, A)[3) + A Al,
3)
where the subscripts L and R denote left and right stereo feeds
respectively. Note that the activity vector, A, is the same for
both the left and right reconstruction terms as well as the
sparsity enforcing term.

1
2

B. Comnvolutional sparse coding

In conventional sparse coding, each basis vector competes
with all others for representation of a single image patch in
isolation. In contrast, our model, which we refer to as Sparse
Convolutional Artificial Neural Network (SCANN) defines 1
as the entire image and follows [8, 9] in replicating the set
of basis vectors with a given stride across the = and y spatial
axes of the image.

Replicated receptive fields overlap when the specified stride
is smaller than the receptive field size. When replicated
receptive fields do not overlap, the SCANN model is al-
gebraically equivalent to conventional sparse coding over
individual patches. In contrast, when receptive fields overlap,
each basis vector additionally competes against all other basis
vectors translated in spatial position by the stride, including
the translation of the basis vector itself. Schultz et al. [8]
shows that this strategy requires fewer basis vectors to achieve
a certain amount of overcompleteness in the model and allows
the use of very large patch sizes without affecting the degree
of overcompleteness.

III. EXPERIMENTS

Our experiments were done using a two-layer network
architecture. The first layer encodes binocular images from
basis vectors learned via unsupervised methods, followed by
a second supervised linear classifier to achieve depth inference.
As SCANN produces rectified activations, we chose a rectified
feed-forward model (denoted as ReLU) for comparison. Fur-
thermore, we apply a threshold to the ReLU model (denoted as
T-ReLU) to match the sparsity of SCANN across the dataset.
This control allowed us to explicitly test the effect of lateral
competition on depth inference. We test all 3 models using a
basis obtained from FastICA (as done by Hoyer et al. [4]) as
well as a basis fine-tuned for sparse reconstruction.

All of our experiments were implemented using PetaVision
[10], an open source, massively parallel, high performance
neural simulation toolbox. Simulations were primarily per-
formed on GPU instances on Amazon Web Services (AWS)
cloud computing. The model implementation, parameter files,
and analysis scripts used to make the figures in this paper are
available at [10].

A. Learning binocular basis

We follow [4] to learn a set of binocular basis vectors
using the FastICA algorithm [11]. The network was trained
on 50,000 randomly chosen corresponding stereo patches from
stereo video frame pairs (10 random stereo patches per stereo
pair) from the KITTI Vision Benchmark Suite’s raw data [12].
Each basis vector covered a patch size of 66 by 66 pixels, with
a total of 512 independent components. This patch size allows
a single element’s receptive field to encode large disparities
between the left and right input.

FastICA basis vectors are not optimized for the SCANN
network. Since the FastICA algorithm works on individual
patches, these basis vectors must account for translational
shifts, making some of the basis vectors redundant for
SCANN. We use the FastICA basis vectors to seed SCANN,
and additionally fine-tuned the basis to be optimized for sparse
reconstruction. Figure 1 shows the basis vectors before and
after fine-tuning, as well as the decrease in energy (Equation
3) during the fine-tuning process. We find that fine-tuning
repurposes redundant elements for better sparse reconstruction.

B. Encoding of binocular images

Using both the FastICA and fine-tuned basis vectors, we
encoded KITTT’s stereo benchmarking training set of 193
downsampled and whitened images using SCANN, ReLU, and
T-ReLU. Figure 2 shows a heat-map of activations from a sin-
gle element for all models on fine-tuned elements. Here, each
activation is projected to image space using the basis element
it encodes, weighted by the activation strength. The SCANN
model with fine-tuned elements had approximately 0.5% active
elements across the dataset, while ReLU had approximately
50% active elements. T-ReLU applied a threshold to ReLU
to match the sparsity of SCANN across the dataset. We
find that SCANN models selectively encodes various image
features at certain depths as opposed to feed-forward models
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Fig. 1. Shown are a subset of the basis vectors used. Left: The top row shows
the basis obtained through FastICA, while the bottom row shows the same
elements after fine-tuning. The left and right columns are the bases for the left
and right views respectively. Right: Sparse reconstruction energy over training
time. Weights were initialized as FastICA elements and fine-tuned for sparse
reconstruction. Fine-tuning of FastICA elements reduced energy (Equation 3)
by a factor of two.

Original

Fig. 2. Single element heat-maps are shown from two select elements overlaid
with the final reconstruction. The top and bottom SCANN elements prefer
near and far image features respectively, showing that SCANN activations
are more selective for depth as compared to ReLU and T-ReLU. Each single
element heat-map is remapped to color for better visibility. Figure best viewed
in color.

which contain little depth selectivity. Here, SCANN encoding
allows for a more linearly separable encoding suited for depth
inference.

RelU T-ReLU

N
| HL.

Patch Width  Patch Width  Far Near  Far Near  Far Near

Fig. 3. Shown are 3-dimensional ATA kernels. The top and bottom rows show
elements used from Figure 2. The right three columns show the likelihood of
being in a depth bin versus the vertical patch height of the patch. SCANN
shows more distinctive depth selectivity than both feed-forward models.

C. Depth inference

To assess the role of sparse coding in depth inference,
we use an activity-triggered average (ATA) for supervised
inference on the encodings. Every time a given element is
active across the dataset, we take a snapshot of the ground truth
patch that corresponds to the spatial location of the activation,
weighted by the magnitude of that activation. We then average
the set of snapshots, resulting in an average ground truth kernel
for every element. This was done over the first 100 images
of the stereo benchmark dataset. For inference, we use the
learned ATA kernels to project activations to depth space on
the held-out latter 93 images.

The choice of ATA as a linear classifier was motivated by
the simplicity of the method. ATA does not contain any hyper-
parameters to tune, making it a good classifier to do a direct
comparison between SCANN and feed-forward models. Be-
cause the algorithm finds a linear mapping between depth and
activation coefficients, we bin the provided depth annotations
into 128 bins, 2 discrete depths wide, and represent the values
in each bin proportional to the probability of being in the bin.
It follows that each ATA kernel is three dimensional; namely,
patch width, height, and depth bin. In inference, the depth bin
with the maximum activity is taken to be the depth at that
pixel.

The SCANN kernels obtained from our ATA method (Figure
3) show distinctive depth structure with respect to the vertical
axis of the patch, while the ReLU kernels show a mostly
uniform kernel. It is interesting to note the vertical spatial
location of each basis, where the first basis vector (Figure 3
top) is localized at the bottom of the patch, and the second
basis vector (Figure 3 bottom) is localized at the top of the
patch. SCANN encoding show a narrow band of depths tuned
for near (Figure 3 top) and far (Figure 3 bottom) at these
vertical spatial locations of the basis vectors. Here, the near
tuned element (top) shows T-ReLU to have less confidence at
the bottom of the patch, and the far tuned element (bottom)
shows T-ReLU to be broader in tuning overall as compared
to SCANN. This implies that the lateral competition inherent
in SCANN encoding is crucial to achieving a depth-selective
encoding from stereo image pairs.

Figure 4 shows the depth inference on an example from the
test set (the latter 93 images in the dataset). Table 1 shows
the resulting errors for depth inference. We consider a depth
estimate within 1 bin of the ground truth value to be correct,
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Fig. 4. Depth inference from unsupervised encodings are obtained from
the ATA method. SCANN using a basis optimized for sparse reconstruction
achieves the best performance. The lack of estimates for T-ReLU with FastICA
on the bottom right of the image is due to the lack of activations at that
location. Figure best viewed in color.

| FastiCA  Fine-tuned
SCANN | 86.8% 75.7 %
ReLU 88.3% 88.6%
T-ReLLU | 84.6% 85.0%

Table 1. Depth inference errors across the test set for simple 2 layer network
is shown. SCANN with basis fine-tuned for sparse reconstruction achieves the
best performance. The model does not take into account global spatial bias.

computed over all ground truth depth pixels, based on the
KITTI stereo benchmarking metric of a 3 pixel error for 256
discrete depths. All of the models we tested tended to do better
with far depths than near, which could have resulted from the
stereo cameras in the dataset focused at infinity. SCANN acti-
vations with a fine-tuned basis for sparse reconstruction encode
better depth maps than comparable feed-forward models. It is
interesting to note that thresholding activations improve depth
inference accuracy as compared with ReLU, and that fine-
tuning a basis for sparse reconstruction decreases accuracy on
feed-forward models.

While the accuracy of depth estimates reported here are
not presently competitive with more standard approaches, this
deficit likely reflects our use of a simplistic classifier, whereas
a more complex classifier would perform better depth infer-
ence. Furthermore, our algorithm uses shared-weight binocular
kernels applied throughout the image, and thus do not utilize
the strong correlation between image location and depth. It
is interesting to note that our model performs worse than
averaging all of the training depth maps as published by
KITTI, implying that global spatial information is a major
cue to depth in the dataset. However, the goal of this research
was to compare encoding techniques as opposed to achieving
high performance on depth inference.

IV. CONCLUSION

We present a sparse coding model for stereo image pairs,
and show that our model performs better in depth inference
than a comparable feed-forward network. We hypothesize that
this is due to the fact that disparity itself is an ambiguous
depth cue that can be confounded by image features, such
as periodic features present in stereo images. Competition
requires elements to not only match a given disparity, but
also match other associated contextual cues. For example, we
presented evidence of two elements selective for near and
far depths in SCANN encoding, whereas the same elements
encoded with a feed-forward technique shows little selectivity.
We believe that an approach based on local binocular features
is more likely to generalize to the extraction of depth estimates
from monocular images. Future work includes comparing
these networks with a supervised training method to fine-
tune basis vectors for depth inference rather than for sparse
reconstruction.
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