446 research outputs found
Arginine mutation alters binding of a human monoclonal antibody to antigens linked to systemic lupus erythematosus and the antiphospholipid syndrome
Objective: Previous studies have shown the importance of somatic mutations and arginine residues in the complementarity-determining regions (CDRs) of pathogenic anti-double-stranded DNA (anti-dsDNA) antibodies in human and murine lupus, and in studies of murine antibodies, a role of mutations at position 53 in VH CDR2 has been demonstrated. We previously demonstrated in vitro expression and mutagenesis of the human IgG1 monoclonal antibody B3. The present study was undertaken to investigate, using this expression system, the importance of the arginine residue at position 53 (R53) in B3 VH.
Methods: R53 was altered, by site-directed mutagenesis, to serine, asparagine, or lysine, to create 3 expressed variants of VH. In addition, the germline sequence of the VH3-23 gene (from which B3 VH is derived) was expressed either with or without arginine at position 53. These 5 new heavy chains, as well as wild-type B3 VH, were expressed with 4 different light chains, and the resulting antibodies were assessed for their ability to bind to nucleosomes, -actinin, cardiolipin, ovalbumin, 2-glycoprotein I (2GPI), and the N-terminal domain of 2GPI (domain I), using direct binding assays.
Results: The presence of R53 was essential but not sufficient for binding to dsDNA and nucleosomes. Conversely, the presence of R53 reduced binding to -actinin, ovalbumin, 2GPI, and domain I of 2GPI. The combination B3 (R53S) VH/B3 VL bound human, but not bovine, 2GPI.
Conclusion: The fact that the R53S substitution significantly alters binding of B3 to different clinically relevant antigens, but that the alteration is in opposite directions depending on the antigen, implies that this arginine residue plays a critical role in the affinity maturation of antibody B3
Anti-factor Xa antibodies in patients with antiphospholipid syndrome and their effects upon coagulation assays
- Introduction: The aim of this study was to examine the prevalence and functional effects of antibodies directed against Factor (F)Xa and other serine proteases (SP) in patients with antiphospholipid syndrome (APS).
- Methods: Serum from patients with APS (n = 59), systemic lupus erythematosus (SLE; n = 106), other autoimmune rheumatic disease (ARD; n = 63) and 40 healthy controls (HC) were tested for IgG activity against thrombin (Thr), FXa, FVIIa, phosphatidylserine (PS)/FXa and antithrombin (AT)-III by enzyme-linked immunosorbent assay (ELISA). Anti-FXa positive IgG were purified to measure their avidity by chaotropic ELISA and functional effects upon clotting time (FXa-ACT) and FXa enzymatic activity (± AT-III).
- Results: Anti-FXa IgG were found in patients with SLE (49.1%) and APS (33.9%) (P <0.05) but not in ARD controls and HC. In contrast, anti-Thr and anti-PS/FXa IgG were identified in other ARD and anti-FVIIa IgG were low in all groups. The avidity of APS-IgG to FXa was significantly higher than SLE-IgG (P <0.05). Greatest prolongation of FXa-ACT was observed with APS-IgG and greatest inhibitory effect upon FXa enzymatic activity was found with APS-IgG followed by SLE-IgG compared to HC-IgG. ATIII inhibition of FXa was significantly reduced by APS-IgG compared with HC and SLE (P <0.05) and did not correlate with binding to AT-III.
- Conclusion: APS anti-FXa IgG have higher avidity to FXa and greater effects upon the enzymatic and coagulant activity of FXa compared with SLE anti-FXa IgG. Further studies of anti-FXa antibodies in APS, SLE and other non-autoimmune thrombotic disease cohorts are now required to evaluate whether targeting FXa with selective inhibitors in patients bearing anti-FXa antibodies may be an effective treatment strategy
The Escherichia coli transcriptome mostly consists of independently regulated modules
Underlying cellular responses is a transcriptional regulatory network (TRN) that modulates gene expression. A useful description of the TRN would decompose the transcriptome into targeted effects of individual transcriptional regulators. Here, we apply unsupervised machine learning to a diverse compendium of over 250 high-quality Escherichia coli RNA-seq datasets to identify 92 statistically independent signals that modulate the expression of specific gene sets. We show that 61 of these transcriptomic signals represent the effects of currently characterized transcriptional regulators. Condition-specific activation of signals is validated by exposure of E. coli to new environmental conditions. The resulting decomposition of the transcriptome provides: a mechanistic, systems-level, network-based explanation of responses to environmental and genetic perturbations; a guide to gene and regulator function discovery; and a basis for characterizing transcriptomic differences in multiple strains. Taken together, our results show that signal summation describes the composition of a model prokaryotic transcriptome
Design of MAC Protocols With Fast Collision Resolution for Wireless Local Area Networks
Methamphetamine withdrawal induces activation of CRF neurons in the brain stress system in parallel with an increased activity of cardiac sympathetic pathways.
Methamphetamine (METH) addiction is a major public health problem in some countries. There is evidence to suggest that METH use is associated with increased risk of developing cardiovascular problems. Here, we investigated the effects of chronic METH administration and withdrawal on the activation of the brain stress system and cardiac sympathetic pathways. Mice were treated with METH (2 mg/kg, i.p.) for 10 days and left to spontaneous withdraw for 7 days. The number of corticotrophin-releasing factor (CRF), c-Fos, and CRF/c-Fos neurons was measured by immunohistochemistry in the paraventricular nucleus of the hypothalamus (PVN) and the oval region of the bed nucleus of stria terminalis (ovBNST), two regions associated with cardiac sympathetic control. In parallel, levels of catechol-o-methyl-transferase (COMT), tyrosine hydroxylase (TH), and heat shock protein 27 (Hsp27) were measured in the heart. In the brain, chronic-METH treatment enhanced the number of c-Fos neurons and the CRF neurons with c-Fos signal (CRF+/c-Fos+) in PVN and ovBNST. METH withdrawal increased the number of CRF+neurons. In the heart, METH administration induced an increase in soluble (S)-COMT and membrane-bound (MB)-COMT without changes in phospho (p)-TH, Hsp27, or pHsp27. Similarly, METH withdrawal increased the expression of S- and MB-COMT. In contrast to chronic treatment, METH withdrawal enhanced levels of (p)TH and (p)Hsp27 in the heart. Overall, our results demonstrate that chronic METH administration and withdrawal activate the brain CRF systems associated with the heart sympathetic control and point towards a METH withdrawal induced activation of sympathetic pathways in the heart. Our findings provide further insight in the mechanism underlining the cardiovascular risk associated with METH use and proposes targets for its treatment
T Cells from Programmed Death-1 Deficient Mice Respond Poorly to Mycobacterium tuberculosis Infection
Programmed Death-1 (PD-1; CD279) receptor molecule is widely believed to be a negative regulator predominantly expressed by exhausted/activated mouse T cells. Upon interaction with its ligands, PD-L1 and PD-L2, PD-1 inhibits activation of T cells and cytokine production, which has been documented in various viral and fungal infections as well as in vitro studies. Therefore, inhibition of T cell responses by PD-1 resulted in disease resistance in a variety of mouse infection models studied heretofore.Here, we report that PD-1 deficient (PD-1(-/-)) mice infected with Mycobacterium tuberculosis (M. tb) H37Rv by the aerosol route have increased susceptibility as compared with their wild type littermates. Surprisingly, M. tb antigen-specific T cell proliferation was dramatically reduced in PD-1 deficient animals compared with wild-type littermates, and this was due to increased numbers of regulatory T cells (Tregs) and recruitment of mesenchymal stem cells. Furthermore, PD-1(-/-) mice exhibited decreases in the autophagy-induced LC3-B marker protein in macrophages.Our findings suggest that PD-1 does not play an inhibitory role during M. tb infection and instead promotes mycobacterial clearance in mice
Analysis of promoter regions of co-expressed genes identified by microarray analysis
BACKGROUND: The use of global gene expression profiling to identify sets of genes with similar expression patterns is rapidly becoming a widespread approach for understanding biological processes. A logical and systematic approach to study co-expressed genes is to analyze their promoter sequences to identify transcription factors that may be involved in establishing specific profiles and that may be experimentally investigated. RESULTS: We introduce promoter clustering i.e. grouping of promoters with respect to their high scoring motif content, and show that this approach greatly enhances the identification of common and significant transcription factor binding sites (TFBS) in co-expressed genes. We apply this method to two different dataset, one consisting of micro array data from 108 leukemias (AMLs) and a second from a time series experiment, and show that biologically relevant promoter patterns may be obtained using phylogenetic foot-printing methodology. In addition, we also found that 15% of the analyzed promoter regions contained transcription factors start sites for additional genes transcribed in the opposite direction. CONCLUSION: Promoter clustering based on global promoter features greatly improve the identification of shared TFBS in co-expressed genes. We believe that the outlined approach may be a useful first step to identify transcription factors that contribute to specific features of gene expression profiles
CNS Expression of B7-H1 Regulates Pro-Inflammatory Cytokine Production and Alters Severity of Theiler's Virus-Induced Demyelinating Disease
The CNS is a unique organ due to its limited capacity for immune surveillance. As macrophages of the CNS, microglia represent a population originally known for the ability to assist neuronal stability, are now appreciated for their role in initiating and regulating immune responses in the brain. Theiler's murine encephalomyelitis virus (TMEV)-induced demyelinating disease is a mouse model of multiple sclerosis (MS). In response to TMEV infection in vitro, microglia produce high levels of inflammatory cytokines and chemokines, and are efficient antigen-presenting cells (APCs) for activating CD4+ T cells. However, the regulatory function of microglia and other CNS-infiltrating APCs in response to TMEV in vivo remains unclear. Here we demonstrate that microglia increase expression of proliferating cell nuclear antigen (PCNA), and phenotypically express high levels of major histocompatibility complex (MHC)-Class I and II in response to acute infection with TMEV in SJL/J mice. Microglia increase expression of the inhibitory co-stimulatory molecule, B7-H1 as early as day 5 post-infection, while CNS-infiltrating CD11b+CD11c−CD45HIGH monocytes/macrophages and CD11b+CD11c+CD45HIGH dendritic cells upregulate expression of B7-H1 by day 3 post-infection. Utilizing a neutralizing antibody, we demonstrate that B7-H1 negatively regulates TMEV-specific ex vivo production of interferon (IFN)-γ, interleukin (IL)-17, IL-10, and IL-2 from CD4+ and CD8+ T cells. In vivo blockade of B7-H1 in SJL/J mice significantly exacerbates clinical disease symptoms during the chronic autoimmune stage of TMEV-IDD, but only has minimal effects on viral clearance. Collectively, these results suggest that CNS expression of B7-H1 regulates activation of TMEV-specific T cells, which affects protection against TMEV-IDD
A highly selective, label-free, homogenous luminescent switch-on probe for the detection of nanomolar transcription factor NF-kappaB
Transcription factors are involved in a number of important cellular processes. The transcription factor NF-κB has been linked with a number of cancers, autoimmune and inflammatory diseases. As a result, monitoring transcription factors potentially represents a means for the early detection and prevention of diseases. Most methods for transcription factor detection tend to be tedious and laborious and involve complicated sample preparation, and are not practical for routine detection. We describe herein the first label-free luminescence switch-on detection method for transcription factor activity using Exonuclease III and a luminescent ruthenium complex, [Ru(phen)2(dppz)]2+. As a proof of concept for this novel assay, we have designed a double-stranded DNA sequence bearing two NF-κB binding sites. The results show that the luminescence response was proportional to the concentration of the NF-κB subunit p50 present in the sample within a wide concentration range, with a nanomolar detection limit. In the presence of a known NF-κB inhibitor, oridonin, a reduction in the luminescence response of the ruthenium complex was observed. The reduced luminescence response of the ruthenium complex in the presence of small molecule inhibitors allows the assay to be applied to the high-throughput screening of chemical libraries to identify new antagonists of transcription factor DNA binding activity. This will allow the rapid and low cost identification and development of novel scaffolds for the treatment of diseases caused by the deregulation of transcription factor activity
- …
