819 research outputs found

    Educational Probe for Developing Online Education: A Case of Online Problem-Based Learning in Design Education in India

    Get PDF
    The COVID-19 pandemic brought challenges and opportunities for higher education and one of the important areas was online education. Especially in design field, Online Problem-Based Learning has emerged as a promising method. This paper explores the potential of online-PBL and how it can be developed through a prototype approach. An action research in Indian HEI shows insights regarding the potentiality of online-PBL and application of a prototype approach to educational development activities. A concept of educational probes was proposed as a method to design educational program. © The Author(s), 2022

    Calculations of Pressure Pulsations in Pipelines In Case of Non-Sinusoidal Input Flows

    Get PDF

    Model-independent test of gravity with a network of ground-based gravitational-wave detectors

    Full text link
    The observation of gravitational waves with a global network of interferometric detectors such as advanced LIGO, advanced Virgo, and KAGRA will make it possible to probe into the nature of space-time structure. Besides Einstein's general theory of relativity, there are several theories of gravitation that passed experimental tests so far. The gravitational-wave observation provides a new experimental test of alternative theories of gravity because a gravitational wave may have at most six independent modes of polarization, of which properties and number of modes are dependent on theories of gravity. This paper proposes a method to reconstruct the independent modes of polarization in time-series data of an advanced detector network. Since the method does not rely on any specific model, it gives model-independent test of alternative theories of gravity

    Proposed method for searches of gravitational waves from PKS 2155-304 and other blazar flares

    Full text link
    We propose to search for gravitational waves from PKS 2155-304 as well as other blazars. PKS 2155-304 emitted a long duration energetic flare in July 2006, with total isotropic equivalent energy released in TeV gamma rays of approximately 104510^{45} ergs. Any possible gravitational wave signals associated with this outburst should be seen by gravitational wave detectors at the same time as the electromagnetic signal. During this flare, the two LIGO interferometers at Hanford and the GEO detector were in operation and collecting data. For this search we will use the data from multiple gravitational wave detectors. The method we use for this purpose is a coherent network analysis algorithm and is called {\tt RIDGE}. To estimate the sensitivity of the search, we perform numerical simulations. The sensitivity to estimated gravitational wave energy at the source is about 2.5×10552.5 \times 10^{55} ergs for a detection probability of 20%. For this search, an end-to-end analysis pipeline has been developed, which takes into account the motion of the source across the sky.Comment: 10 pages, 7 figures. Contribution to 12th Gravitational Wave Data Analysis Workshop. Submitted to Classical and Quantum Gravity. Changes in response to referee comment

    Searches for gravitational waves associated with pulsar glitches using a coherent network algorithm

    Full text link
    Pulsar glitches are a potential source of gravitational waves for current and future interferometric gravitational wave detectors. Some pulsar glitch events were observed by radio and X-ray telescopes during the fifth LIGO science run. It is expected that glitches from these same pulsars should also be seen in the future. We carried out Monte Carlo simulations to estimate the sensitivity of possible gravitational wave signals associated with a pulsar glitch using a coherent network analysis method. We show the detection efficiency and evaluate the reconstruction accuracy of gravitational waveforms using a matched filter analysis on the estimated gravitational waveforms from the coherent analysis algorithm.Comment: submitted to CQ

    Probing non-tensorial polarizations of stochastic gravitational-wave backgrounds with ground-based laser interferometers

    Get PDF
    In a general metric theory of gravitation in four dimensions, six polarizations of a gravitational wave are allowed: two scalar and two vector modes, in addition to two tensor modes in general relativity. Such additional polarization modes appear due to additional degrees of freedom in modified theories of gravitation or theories with extra dimensions. Thus, observations of gravitational waves can be utilized to constrain the extended models of gravitation. In this paper, we investigate detectability of additional polarization modes of gravitational waves, particularly focusing on a stochastic gravitational-wave background, with laser-interferometric detectors on the Earth. We found that multiple detectors can separate the mixture of polarization modes in detector outputs, and that they have almost the same sensitivity to each polarization mode of stochastic gravitational-wave background.Comment: 18 pages, 13 figure

    Prospects for improving the sensitivity of KAGRA gravitational wave detector

    No full text
    KAGRA is a new gravitational wave detector which aims to begin joint observation with Advanced LIGO and Advanced Virgo from late 2019. Here, we present KAGRA's possible upgrade plans to improve the sensitivity in the decade ahead. Unlike other state-of-the-art detectors, KAGRA requires different investigations for the upgrade since it is the only detector which employs cryogenic cooling of the test mass mirrors. In this paper, investigations on the upgrade plans which can be realized by changing the input laser power, increasing the mirror mass, and injecting frequency dependent squeezed vacuum are presented. We show how each upgrade affects to the detector frequency bands and also discuss impacts on gravitational-wave science. We then propose an effective progression of upgrades based on technical feasibility and scientific scenarios

    At-sea distribution and habitat of breeding Japanese Murrelets Synthliboramphus wumizusume: implications for conservation management

    Get PDF
    The Japanese Murrelet Synthliboramphus wumizusume is a rare, globally ‘Vulnerable’ seabird, endemic to Japan and South Korea. However, little is known of its at-sea distribution, habitat or threats. We conducted several years of at-sea surveys around Japan to model Japanese Murrelet density in relation to habitat parameters, and make spatial predictions to assess the adequacy of the current Japanese marine Important Bird and Biodiversity Area (IBA) network for the species. During a five-year period, 3,485 km of at-sea surveys recorded 3,161 Japanese Murrelets around four breeding locations. Maximum murrelet group size was 90 individuals with a mean group size of 2.9 ± 4.2 individuals. Models of Japanese Murrelet at-sea density around the two largest breeding locations predicted that almost all murrelets occur within 30 km of the breeding colony and most within 10 km. Murrelets were predicted closer to the colony in May than in April and closer to the colony at a neritic colony than at an offshore island colony. Additionally, murrelets breeding on an offshore island colony also commuted to mainland neritic habitat for foraging. The marine habitat used by Japanese Murrelets differed between each of the four surveyed colonies, however oceanographic variables offered little explanatory power in models. Models with colony, month and year generated four foraging radii (9–39 km wide) containing murrelet densities of > 0.5 birds/km2. Using these radii the Japanese marine IBA network was found to capture between 95% and 25% of Japanese Murrelet at-sea habitat while breeding and appears appropriately configured to protect near-colony murrelet distributions. Given the range of marine habitats that breeding murrelets inhabit, our simple models offer an applicable method for predicting to unsampled colonies and generating ecologically-informed seaward extension radii. However, data on colony populations and further at-sea surveys are necessary to refine models and improve predictions
    • …
    corecore