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Abstract 

The Japanese Murrelet (Synthliboramphus wumizusume) is a rare, globally Vulnerable seabird, 

endemic to Japan and South Korea. However, little is known of its at-sea distribution, habitat 

or threats. We conducted several years of at-sea surveys around Japan to model Japanese 



Murrelet density in relation to habitat parameters, and make spatial predictions to assess the 

adequacy of the current Japanese marine Important Bird and Biodiversity Area (IBA) network 

for the species. During a five-year period, 3485 km of at-sea surveys recorded 3161 Japanese 

Murrelets around four breeding locations. Maximum murrelet group size was 90 individuals 

with a mean group size of 2.9 ± 4.2 individuals. Models of Japanese Murrelet at-sea density 

around the two largest breeding locations predicted that almost all murrelets occur within 30 

km of the breeding colony and most within 10 km. Murrelets were predicted closer to the 

colony in May than in April and closer to the colony at a neritic colony than at an offshore 

island colony. Additionally, murrelets breeding on an offshore island colony also commuted to 

mainland neritic habitat for foraging. The marine habitat used by Japanese Murrelets differed 

between each of the four surveyed colonies, however oceanographic variables offered little 

explanatory power in models. Models with colony, month and year generated four foraging 

radii (9 – 39 km wide) containing murrelet densities of > 0.5 birds/km2. Using these radii the 

Japanese marine IBA network was found to capture between 95% and 25% of Japanese 

Murrelet at-sea habitat while breeding and appears appropriately configured to protect near-

colony murrelet distributions. Given the range of marine habitats that breeding murrelets 

inhabit, our simple models offer an applicable method for predicting to unsampled colonies 

and generating ecologically-informed seaward extension radii. However, data on colony 

populations and further at-sea surveys are necessary to refine models and improve predictions. 

 

Keywords: At-sea survey, Bycatch, Important Bird Area, Japanese Murrelet, seaward 

extension 

 

Introduction 

The Japanese Murrelet (Synthliboramphus wumizusume, hereafter murrelet) is a small seabird 



endemic to Japan and South Korea and is listed on the IUCN Red List as globally Vulnerable 

(Birdlife International 2015). With a global population of 2,500-10,000 adults it is the one of 

the rarest alcids in the world (Carter et al. 2002, Birdlife International 2015). The species was 

designated as a Japanese 'national monument' in 1972 in recognition of its endemic status and 

need for protection (Hasegawa 1984) but continues to decline and, owing to its rarity, is poorly 

studied and understood.  

 

Murrelet populations are declining due to terrestrial and marine threats. At monitored breeding 

sites, human disturbance and predation by introduced rats (Rattus rattus, R. norvegicus) and 

carrion and jungle crows (Corvus corone, C. macrorhynchus) are apparent threats (Carter et al. 

2002, Ogi 2008, Croxall et al. 2012). By contrast, the marine threats faced by murrelets are 

less well known, particularly due to poor data on murrelet at-sea distribution. Accidental 

bycatch of seabirds at-sea in gillnet fisheries has been identified as a major source of mortality, 

with alcids the most frequently caught group and the Northwest Pacific one of the most high-

risk areas (Žydelis et al. 2013). Indeed, the Japanese Murrelet was identified as the second 

most exposed seabird species to gillnet bycatch in a global assessment (Waugh et al. 2011). 

Murrelets are taken as bycatch in driftnets and gillnets while foraging near breeding colonies 

(DeGange et al. 1993, Carter et al. 2002, Ogi 2008), and also in large-scale squid driftnet 

fisheries while wintering Southeast of Hokkaido (Ogi et al. 1993, Piatt and Gould 1994). Piatt 

and Gould (1994) estimated that in 1990 and 1991, 1-10% of the adult murrelets population 

was killed in northwest Pacific drift-net squid fisheries, highlighting the level of threat. In 

addition to bycatch, murrelets are likely threatened by human industrial activities while 

breeding in Japanese waters, such as oiling and pollution (Camphuysen and Heubeck 2001) 

and wind farm development (Furness et al. 2013).  

 



To counter such threats, marine conservation in Japan has received increasing attention in 

recent years. In 2008, the Basic Act on Ocean Policy (Kantei 2007) was adopted, followed by 

the publication of the Marine Biodiversity Conservation Strategy of Japan in 2011 (Ministry 

Of Environment Japan 2011). This governmental strategy clearly defined Marine Protected 

Areas (MPAs), and under the definition, legally qualified 8.3% of Japanese waters as MPAs. 

Japan now seeks to designate an additional 1.7% of its exclusive economic zone (EEZ) as 

MPAs to meet the Convention on Biological Diversity (CBD) Aichi Target 11 (i.e. to conserve 

≥10% of biologically and ecologically important national marine areas by 2020 (CBD 2010).  

 

However, the current network of MPAs has received criticism from conservationists and 

researchers for not adequately representing areas of high marine biodiversity and lacking 

appropriate management (NACS-J 2012). Since 2010, the Wild Bird Society of Japan (WBSJ) 

has used Birdlife International’s Important Bird and Biodiversity Area (IBA) criteria to identify 

a network of sites for the conservation of seabirds and marine ecosystems in Japanese waters. 

Marine IBAs have been identified in waters around breeding colonies, using radii informed by 

seabird foraging ranges and distribution at-sea (Birdlife International 2010, Thaxter et al. 

2012). Although marine IBAs can be delimited more precisely using methods such as seabird 

tracking, the seaward extension method is recommended as a simple but effective approach, 

especially when refined using seabird habitat and oceanographic preferences (Thaxter et al. 

2012, Soanes et al. 2016). 

 

To assess and mitigate at-sea threats for seabirds, baseline data on at-sea distribution and 

marine habitat preferences are essential (Lascelles et al. 2014). However, acquiring these data 

is challenging for seabirds such as murrelets, for which telemetry studies are difficult (Kissling 

et al. 2015). As such, we conducted ship-based surveys to model the influence of marine habitat 



variables on the distribution of breeding murrelets while at-sea. We describe: 1) habitat 

variables that influence near-colony murrelet distributions; 2) habitat variables that influence 

foraging murrelet distributions; and 3) the marine habitats of murrelets from different colonies. 

We use constructed models to predict the extent of murrelet at-sea distribution throughout 

breeding, and assess the adequacy of the current Japanese marine IBA network to protect the 

murrelets. 

 

Methods 

Survey data collection 

At-sea surveys for murrelets were conducted around active colonies in four areas: by the WBSJ 

at Northern Izu islands and Kojine; by Y. Nakamura at Biroujima; and by H. Sato and S. Mori 

at Oki (Fig.1). Surveys were carried out from 2008 to 2012 during the breeding season and 

predominantly in the incubation phase. All surveys remained in the vicinity of murrelet 

colonies (<50 km) and, with the exception of two surveys at Biroujima, were conducted in 

daylight hours (Table 1). Surveys were made from the bow of a boat, travelling at 20 km/hr, 

by 1-4 observers using binoculars. All diving, floating and flying murrelets were counted 

within 30m of the boat on both sides and a 90º arc to the bow. Whenever murrelets were 

encountered, the GPS position was recorded and with the exception of three surveys, the 

number of murrelets was counted (Table 1). 

 

Marine habitat data 

All data handling and statistical analyses were performed in the statistical software 

environment program R, version 3.1 (R Core Team 2014), mapping was conducted using QGIS 

2.0.1 – Dufour (QGIS Development Team 2013). To model murrelet observations in relation 



to marine habitat, we used a number of physical and environmental variables potentially 

correlated with seabird distribution and abundance (Appendix S1) (Louzao et al. 2009, Oppel 

et al. 2012). Static variables bathymetric depth (BATHY), seabed slope (SLOPE) and 

minimum distance to land (D_LAND) were extracted or calculated from the GEBCO 30 arc-

second global bathymetry and topography grid (GEBCO 2014). As central-place foragers, the 

marine habitat accessed by breeding seabirds is heavily influenced by distance from the 

breeding colony (Grecian et al. 2012, Oppel et al. 2017). We compiled a list of all known 

murrelet breeding localities in Japan (Appendix S2) and calculated a ‘minimum distance to 

colony’ layer (D_COL) in order to quantify the constraints of central place foraging. 

Unfortunately, population estimates are unavailable for almost all colonies (but see Carter et 

al. 2002) and thus the impact of intra-specific competition (Lewis et al. 2001, Wakefield et al. 

2017) could not be modelled.   

 

Oceanographic variables sea surface temperature (SST) and chlorophyll-a concentration 

(CHLA) were created from MODIS Aqua and Terra level 2 satellite image products, 

downloaded via the OceanColor data portal (http://oceancolor.gsfc.nasa.gov). MODIS level 2 

Local Area Coverage (L2_LAC) images are available every 1-2 days with an approximate 

spatial resolution of 1 km, but require quality-control processing to remove suspect pixels 

(Oceancolor 2015). We used ESA BEAM software (BEAM 2014) to georeference and apply 

quality-control flags to MODIS L2 imagery, processing images to level 3 quality, while 

maintaining the ~1km spatial resolution. Standard level 3 imagery has 17 L2 quality-control 

flags applied to mask pixels, however we included two types of flagged data: HILT (Observed 

radiance very high or saturated) and STRAYLIGHT (Straylight contamination is likely) 

because omitting these would have masked out too many pixels in near-shore areas where 

murrelet surveys took place. We created composite images by averaging temporally 



consecutive data together, to account for cloud covered pixels in L2_LAC imagery and 

previous observations that seabird distribution is rarely related to concurrent conditions in SST 

and CHLA (Louzao et al. 2009, Oppel et al. 2012). Composite CHLA and SST images were 

created for each unique survey, by averaging all processed images falling within the period of 

the survey and the 3 months preceding. A three month composite window was used following 

Lavers et al. (2014) to characterise the broad oceanographic conditions of the murrelet 

incubation period, and to account for the time needed for energy to flow from remotely-sensed 

primary productivity to higher trophic levels, which constitute seabird prey (Wakefield et al. 

2009). Gradient variables (G_CHL and G_SST) were created from the corresponding CHLA 

and SST composites, using the 3x3 pixel moving window to identify areas of rapid change 

between neighbouring pixels. All created environmental variables were stored as layers with 1 

km cell size using package 'raster' (Hijmans et al. 2014). 

 

Survey data processing and extraction 

Although standardised survey protocols have at times been adhered to around Biroujima and 

Northern Izu island colonies, combined multi-year datasets represent a number of survey 

methodologies. To standardise across surveys, we aggregated the murrelet observation data 

into a spatial grid at 1km scale (matching the resolution of the environmental variables). For 

each survey, grid cells overlaying observations of one or more murrelets were attributed with 

the sum value and grid cells on the survey route where no murrelets were detected were 

assigned ‘absent’. As survey routes frequently overlapped (occupied the same grid cells) over 

the multiple years of sampling, murrelets could conceivably be present and absent in the same 

cell but at different times, allowing for more accurate extraction of temporally dynamic 

oceanographic variables. With the murrelet data attributed to the 1km spatial grid we then 

extracted data from each of the habitat variables based on the corresponding timestamp. The 



marine habitat of murrelets from each of the four sampled colonies was summarised from SST, 

CHLA, BATHY and D_LAND values in pixels where one or more murrelets were 

encountered. 

 

The majority of surveys (n=11) in our dataset included count data, however for some surveys 

(n=3) only presence-absence data were available (Table 1). Count data was selected for 

modelling as the ability to estimate density is useful for understanding and inference in 

conservation management (Nielsen et al. 2005). Removing presence-absence data also 

removed the two Biroujima night surveys. Single surveys of colonies were dropped from 

modelling due to lack of observations (Kojine) or presences and absences only (Oki). The 

remaining colonies, Biroujima, and the Northern Izu islands, were well surveyed and were 

modelled separately due to their geographic differences (Fig.1). At-sea observations distant 

from the colony more accurately reflect preferred habitat for foraging compared to those made 

near-colony, which are complicated by behaviours unrelated to habitat quality such as 

transiting to and from the colony and rafting (Wilson et al. 2009, Grecian et al. 2012). Most 

murrelet observations in our data were made within 20 km of the colony (Fig. 1). However, 

surveys from the Northern Izu Island colonies recorded a second cluster of observations at 

distances  of 20-50 km from the colony (Appendix S3). Using the >20 km distance from colony 

threshold, we took a subset of the Northern Izu Island dataset to represent counts of murrelets 

that were free of near-colony behaviours and more likely to accurately represent preferred 

foraging habitat. 

 

Statistical modelling 

Before constructing models, predictor variables were tested for multicollinearity. We 

calculated a Pearson’s correlation score for all possible pairs of variables, using a value of 0.5 



and above to identify significantly correlated variables (Dormann et al. 2007). CHLA was 

significantly correlated with G_CHL and D_COL was significantly correlated with D_LAND, 

correlated variables were not used together in the same model. Three density models were 

implemented: 'Biro colony', using the full Biroujima dataset; 'Izu colony', using the full 

Northern Izu Islands dataset; and 'Izu foraging', using a subset of the Northern Izu Islands 

dataset for observations >20km from the colony. Murrelet counts were fitted as a response 

using a generalized linear mixed model (GLMM) framework, in package 'lme4' (Bates et al. 

2015). Survey was used as the random intercept to account for differences between surveys, 

such as weather or observation team (Zuur et al. 2009). We calculated the area of each 1 km 

grid cell covered by each survey (between 0.001 and 1 km2) and included this as an offset term 

to account for differences in survey effort between cells. The Izu foraging model was modelled 

using a Poisson error distribution but the Izu and Biro colony models were overdispersed due 

to zero-inflation and modelled using a negative binomial error distribution (Zuur et al 2009). 

The Izu and Biro colony model terms were selected using forward selection, starting with 

D_COL, then Month and Year (including interaction terms) and then adding additional 

environmental variables in turn. The Izu foraging model was built using backward and forward 

selection, as all variables were assumed to have equal potential influence further from the 

colony. The support for addition (or removal) of model terms was based on likelihood ratio 

tests (Ȥ2) and confidence intervals (Bolker et al. 2009). We checked model residuals for spatial 

autocorrelation by calculating Moran's I values over distances: 1-100km in the package 'ncf' 

(Bjornstad 2015), but found no evidence of significant spatial autocorrelation. Goodness-of-fit 

was assessed for GLMMs split into marginal (var. explained by fixed effects) and conditional 

(var. explained by fixed + random effects) pseudo R2 components (Nakagawa and Schielzeth 

2013), in package 'piecewiseSEM' (Lefcheck 2016). Predictive performance was assessed 

using Pearson's and Spearman's rank correlation coefficients between observed and model-



predicted murrelet counts (Potts and Elith 2006). Predictive performance was calculated for 

each model predicting upon its training dataset, and additionally for Biro and Izu colony 

models, predictive performance was assessed for each model predicting to the other colony. 

 

Spatial prediction 

To assess the adequacy of the current Japanese marine IBA network for breeding murrelets, 

we used Biro and Izu colony models to predict murrelet at-sea density around all known 

murrelet colonies (see Appendix S2). We applied a minimum density threshold of 0.5 birds/km2 

to model predictions, thereby limiting their extent to areas appropriate for conservation 

management while protecting core murrelet at-sea densities. For each marine IBA that included 

a murrelet breeding colony, we calculated the proportion of model-predicted murrelet at-sea 

distribution that was captured within the marine IBA. 

 

Results 

Survey results 

A total of 3161 murrelets were recorded in 1221 at-sea encounters from a total of 3485 km of 

surveys undertaken between 2008 and 2012. Murrelets were encountered singularly and in 

groups of up to 90 individuals with a mean group size of 2.9 ± 4.2 individuals. The Northern 

Izu islands were the most intensely surveyed location with a total of 2283 km of surveys; when 

gridded at 1 km, murrelets were observed in 17% of surveyed cells. 634 km of surveys were 

undertaken at Biroujima, with 21% of surveyed cells containing murrelets. 361 km of surveys 

were undertaken at Oki with 6% of surveyed cells containing murrelets. 205 km of surveys 

were undertaken at Kojine with 3% of surveyed cells containing murrelets. Mean density of 

murrelets at-sea was highest around Biroujima colony (1.86 murrelet/km2), followed by 

Northern Izu colonies (1.16 murrelet/km2) and Kojine (0.06 murrelet/km2). Average group size 



of murrelets was highest at Northern Izu Islands with 3.1 ± 4.7 individuals per group, followed 

by Biroujima with 2.2 ± 1.6 individuals per group and Kojine with 1.6 ± 0.84 individuals per 

group. 

 

Marine habitat at different Japanese Murrelet colonies 

The marine habitat in which murrelets were observed, differed significantly between the four 

surveyed colonies by SST (F3 = 285.2, p = <0.001), CHLA (F3 = 862.7, p = <0.001); BATHY 

(F3 = 538.6, p = <0.001) and D_LAND (F3 = 368.8, p = <0.001; Table 2). 

 

Variables influencing Japanese Murrelet at-sea density 

The at-sea density of murrelets at Biroujima significantly increased closer to the colony (Ȥ2 
1= 

108.8, p = <0.001), at 1 km of the colony mean murrelet at-sea densities ranged from 1.75 to 7 

birds/km2 (Figure 2). Their density was dependent on year (Ȥ2 
2= 26.4, p = <0.001; 2008 being 

significantly higher than 2009 and 2012), but did not differ between March and April (Ȥ2 
1= 

2.7, p = 0.1). No other environmental variables significantly influenced murrelet density at 

Biroujima (Table 3). The D_COL and YEAR fixed terms accounted for all variation within the 

survey random term, giving an identical marginal and conditional R2 of 0.37. 

 

The at-sea density of murrelets at Northern Izu colonies also increased closer to the colony, at 

1 km of the colony mean murrelet at-sea densities ranged from 3.49 to 6.74 birds/km2 (Figure 

2). However, in contrast to Biroujima, where the distribution of murrelet density in relation to 

colony distance was static over time, the distance at which murrelets were distributed from 

Northern Izu colonies changed by month (Ȥ2 
2= 94, p = <0.001): murrelets were distributed 

closer to the Northern Izu colonies in May than in April (Figures 2 & 3). However, there were 

no significant differences in overall murrelet density between April and May (Ȥ2 
1= 2.6, p = 



0.11), or between 2010 and 2011 (Ȥ2 
1= 1.7, p = 0.20).  The Izu colony model had a marginal 

R2 of 0.42 and conditional R2 of 0.56, indicating that some of the variance in murrelet density 

was due to survey differences. Additional environmental variables SLOPE (density was higher 

over shallower seabed slopes; Ȥ2 
1= 9.9, p = 0.002) and G_SST (density higher at more 

homogeneous SST gradients; Ȥ2 
1= 4.8, p = 0.028) also significantly influenced murrelet density 

at Northern Izu colonies. However, inclusion of these variables added very little to model 

explanatory power (marginal R2 of 0.44 and conditional R2 of 0.59), so, in the interest of 

transferability of models to un-surveyed colonies, they were dropped from model predictions. 

 

The at-sea density of murrelets foraging at distances > 20km from Northern Izu colonies was 

not influenced by distance to colony (Ȥ2 
1= 0.56, p = 0.451), month (Ȥ2 

1= 0.14, p = 0.708) or 

year (Ȥ2 
1= 0.67, p = 0.415). The density of foraging murrelets was significantly influenced by 

distance to land (Ȥ2 
1= 17.1, p = <0.001), the model predicted that for every 10 km further 

offshore, murrelet density increased by 0.2 birds/km2. The density of foraging murrelets was 

also slightly influenced by CHLA (Ȥ2 
1= 4.1, p = 0.044), the model predicted that for every 1 

mg m-3 increase in the chlorophyll-a concentration, murrelet density increased by 0.025 

birds/km2. The Izu density model had a marginal R2 of 0.05 and conditional R2 of 0.24, 

indicating that almost all of the variance in murrelet density was due to survey differences. 

 

Prediction of density models 

The Biro colony model was better than the Izu colony model for predicting murrelet density 

back onto the sampled colony (Table 3). The Izu colony model was able to predict murrelet 

density at the Biroujima colony better than the Biro colony model could predict murrelet 

density at Northern Izu colonies (Table 3). The Izu foraging model was the poorest performing 

model when predicting to the training dataset and was not used for predicting to independent 



test data (Table 3). Applying the minimum density threshold of 0.5 birds/km2 to predictions 

from colony models generated radii of 9 km distance from Biroujima colony in 2009/2012 

(hereafter, Model A) and 18 km in 2008 (Model B), and radii of 27 km from Northern Izu 

colonies in May (Model C) and 39 km in April (Model D; Figure 3). 

 

Assessment of marine IBA network 

All 22 known murrelet breeding colonies (within Japanese waters) were included in the 

Japanese marine IBA network (Figure 4). 13 marine IBAs overlapped with the 22 murrelet 

colonies, each created using seaward extensions (though not always centred on a murrelet 

colony) of between 8 and 120 km. Around the 22 murrelet colonies, the four radii predicted a 

total area of at-sea habitat where murrelet densities > 0.05 birds/km2 of between 4,188 km2 

(Model A) and 56,134 km2 (Model D; Table 4). Under the most conservative radius of 9 km 

from the colony (Model A), the 13 marine IBAs captured 95% of murrelet at-sea habitat, by 

contrast under the most liberal radius of 39 km from the colony (Model D) marine IBA capture 

of potential habitat fell to 25% (Table 4). 

 

Discussion 

 

At-sea distribution and habitat of breeding Japanese Murrelets 

The at-sea density of murrelets in the vicinity of breeding colonies was mostly explained by 

the distance to the colony, with a contribution from temporal effects. This is consistent with 

the general dominance of distance to colony in governing habitat use by central-place foraging 

seabirds (Oppel et al. 2017, Wakefield et al. 2017). Our study period (Mar-May) covers the 

later part of pre-laying, the entirety of incubation and the early part of provisioning (Ono 1996). 



Throughout this time murrelets are constrained to the colony and higher densities in the vicinity 

of the colony are expected (Grecian et al. 2012). There was no evidence that total murrelet at-

sea density differed by month: April no higher than March at Biroujima and May no higher 

than April at Northern Izu colonies. However, month did interact with distance to colony, 

showing a shift in at-sea density from more offshore in April to more colony-centred in May. 

No such change was observed between March and April. Murrelet breeding phenology could 

explain our results; eggs are laid in March and incubated until hatching in late April and May, 

at which point parents and their semi-precocial chicks move to the sea (Ono 1996). A more 

colony-centric at-sea distribution in May relative to April could come from observations of 

adult murrelets accompanying semi-precocial chicks at-sea. Such family groups are limited in 

their ability to disperse from the colony by chick flightlessness (Sealy et al. 2015). Murrelet 

density did not vary by year at Northern Izu colonies but was significantly higher at Biroujima 

in 2008 relative to 2009 and 2012. The 2008 Biroujima prediction is likely the most 

representative estimate of murrelet at-sea density near this colony given that this was the best 

sampled year. Furthermore, April murrelet densities predicted for Biroujima in 2008 are higher 

than those for the Northern Izu islands in, which is consistent with colony data for Biroujima 

being the largest single breeding colony for the species with a population of ~3000 individuals 

(Iida 2008, Birdlife International Tokyo and Wild Bird Society of Japan 2017), compared to 

the smaller Northern Izu colonies  (combined estimated population of 1000 individuals; Carter 

et al. 2002). Finally, 2009 was an El Niño year, which impacted Japanese seabirds (Mizutani 

et al. 2013) and could explain reduced murrelet at-sea density. Further study will be able to 

elucidate whether inter-annual variance in near-colony at-sea density is an artefact of sampling 

differences or in response to environmental heterogeneity. 

 

The more colony-centric distribution of murrelets around the Biroujima colony compared to 



the Northern Izu colonies could be related to differences in competition pressure and at-sea 

habitat between the two locations (Paiva et al. 2010b, Oppel et al. 2015). Intra-specific 

competition pressure should be higher surrounding the denser populated Biroujima colony than 

the Northern Izu colonies, but greater foraging distances (sensu Ashmole 1963) were not 

observed.  The likely explanation for this disparity is that higher competition pressure at 

Biroujima was offset by greater background resource availability from the productive neritic 

habitat we describe. By contrast, the cooler, deeper, less productive, pelagic habitat 

experienced by murrelets from offshore Northern Izu island colonies, could limit local resource 

availability and necessitate greater foraging ranges (Paiva et al. 2010b).  

 

Our exploration of at-sea habitat used by breeding Japanese Murrelets found large differences 

between colonies. Kojine, at the centre of the Izu island chain is a remote offshore island 

surrounded by deep, oligotrophic water; whereas Oki, situated in the shallow Sea of Japan, is 

surrounded by waters ~4 ºC cooler than the other colonies on Japan's East coast that are warmed 

by the Kuroshio Current. Such different marine habitats are likely to promote different foraging 

strategies (Paiva et al. 2010a), including different at-sea distributions between populations 

(Paiva et al. 2010b). The potential for such local adaptation of foraging strategy in the Japanese 

Murrelet is problematic for applying at-sea distribution findings from studied to unstudied 

colonies. Additionally, as population estimates are unavailable for most Japanese Murrelet 

colonies, we could only link at-sea distributions to marine habitat with considerable uncertainty 

from unknown intra-specific competition pressure. Future study is required to incorporate these 

data into models and improve accuracy. 

 

Despite differences in marine habitat between colonies, oceanographic variables explained 

very little about murrelet density. This could be due to satellite data limitations, such as 



oceanographic features, which aggregate murrelets for foraging, occurring at spatio-temporal 

scales beyond the resolution of our data. Alternatively sampling limitations, such as murrelets 

foraging in excess of 50 km from colonies and thus beyond the scope of our surveys, as seen 

in congeners (Shoji et al. 2012), may have obscured relationships between foraging and 

oceanographic variables. The Izu foraging model, designed to capture foraging habitat, was 

also unable to contribute much evidence for important oceanographic characteristics of the 

habitat. Considering the Izu foraging model pragmatically, we observe that all the murrelets 

distributed > 20 km from Northern Izu colonies were found northwest of the islands over the 

mainland shelf. As no other colonies are nearby, we can assume these birds are from Northern 

Izu colonies and chose neritic habitat (< 200m depth) for foraging. Murrelets are thought to 

forage throughout the water column, feeding on small pelagic fishes and euphausiids (Piatt and 

Gould 1994) and may favour neritic habitats to prey upon benthic molluscs (Moyer 1957). 

However, as our surveys around the Northern Izu islands did not extend far into pelagic waters, 

we cannot discount the possibility that breeding murrelets also target pelagic habitat (e.g. large-

scale anticyclonic eddies and warm-core rings; Piatt and Gould 1994) for foraging. 

 

Overlap of current marine IBA network with predicted Japanese Murrelet at-sea density 

Overall the current Japanese marine IBA network appears reasonably well configured to 

protect murrelets at-sea during breeding. The two marine IBAs capturing almost all murrelet 

habitat from different model predictions (>90%) were able to do so due to a large seaward 

extension radius for a different seabird species: Brown Booby Sula leucogaster (70 km), in the 

case of Danjo Islands IBA; and Black-tailed Gull Larus crassirostris (120 km), in the case of 

Fumishima Islet and Oki Islands IBA (Birdlife International Tokyo and Wild Bird Society of 

Japan, 2017). The Northern Izu Islands IBA and Torishima Island IBA have 20 km seaward 

extensions and perform reasonably well. The remaining marine IBAs were designated based 



on seaward extension radii of 10 km or less, hence the steep decline in total marine IBA 

network coverage of murrelet at-sea habitat from 95% when murrelets are predicted within 9 

km of colonies, to 52% when murrelets are predicted within 18 km of colonies. As such, the 

effectiveness of the marine IBA network to protect murrelets at a broad scale is dependent upon 

which model prediction is applied: the network performs well if murrelets are distributed within 

9 km of colonies (Model A) but poorly if they are distributed within 39 km of colonies (Model 

D). 

 

This highlights the importance of differences in at-sea murrelet distribution between colonies 

and the potential for error when predicting to unsampled colonies, especially in different 

oceanographic regions. Our results, although based only on two breeding locations, suggest 

that the at-sea murrelet density around a neritic colony cannot effectively predict the more 

pelagic distribution of an offshore island colony, and that the murrelet density around the 

offshore island colony, although more informative, cannot fully predict the more colony-centric 

distribution of the neritic colony. As a speculative recommendation the Izu model predictions 

could be applied to other offshore island murrelet colonies (Kojine, Torishima, Danjogunto 

hanagari and Takeshima/Dok) while the Biro model predictions applied to all the other colonies 

upon the Japanese continental shelf. However, this approach does not account for differences 

in colony sizes, which are known to impact the foraging range of seabirds via intra-specific 

competition pressure (Lewis et al. 2001, Oppel et al. 2015, Wakefield et al. 2017). To 

accurately predict murrelet at-sea distributions to unsampled colonies it is essential that: a) 

population estimates are obtained for all known Japanese Murrelet colonies (Appendix S2); 

and b) at-sea surveys are undertaken at colonies in different oceanographic regimes. 

 

Potential at-sea threats identified by model predictions 



Our results indicate that murrelets breeding on neritic colonies do not range far, and that 

murrelets from offshore islands commute to the mainland shelf to forage. This neritic 

distribution puts murrelets at greater threat from interaction with anthropogenic marine 

activities. Murrelets are sensitive to marine pollution and have been killed in oil spills, 

alongside large numbers of other alcids (Sato 1999). In addition to occasional large oil spills, 

the effects of numerous chronic oil spills from shipping poses a significant threat to seabird 

population stability (Camphuysen and Heubeck 2001, Wiese and Robertson 2004). The 

proximity of murrelet colonies to major ports and shipping lanes (e.g. Northern Izu colonies to 

Tokyo Bay), likely exposes breeding murrelets to the persistent threat of oiling while foraging 

(Carter et al. 2002). A neritic distribution also  exposes breeding murrelets to a higher risk of 

disturbance and displacement impacts from offshore wind farms (Busch et al. 2013, Furness et 

al. 2013), pertinent in Japan given their expansion is promoted in the wake of the 2011 

Fukushima nuclear disaster (Busch et al. 2013). Finally, a neritic distribution also exposes 

breeding murrelets to higher gillnet bycatch as most nets are set within 20 nautical miles of the 

coast (Waugh et al. 2011). As murrelets forage throughout the water column (Moyer 1957, 

Piatt and Gould 1994) they potentially interact with both coastal driftnets (targeting tuna and 

salmon), and bottom-anchored gillnets (targeting flatfish and greenling) in Japanese coastal 

waters (Ogi and Shiomi 1991). Given that Japan reports one of highest annual gillnet catches 

(Waugh et al. 2011), we re-iterate here the need for monitoring of seabird bycatch in small-

scale gillnet fisheries within the Japanese EEZ (Piatt and Gould 1994, Carter et al. 2002, Ogi 

2008, Žydelis et al. 2013). 
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Tables 

Table 1. Summary of at-sea survey data for Japanese Murrelets collected during this study 

Location Year Month Day(s) Survey 
area (km2) 

Mean density 
(murrelet/km2) 

Biroujima 2008 March 16-29 83 2.17 
Biroujima 2008 April 26-27 56 2.73 
Biroujima 2009 March 07 60 2.00 
Biroujima *† 2009 March 21 31  
Biroujima *† 2009 April 19 58  
Northern Izu islands 2010 April 06 450 0.97 
Northern Izu islands 2010 April 20 441 0.65 
Northern Izu islands 2010 May 11-12 241 2.09 
Northern Izu islands 2011 April 06 823 0.42 
Northern Izu islands 2011 April 21 794 0.51 
Oki † 2011 April 25-28 185  
Northern Izu islands 2011 May 09 294 2.31 
Kojine 2012 March 20-22 266 0.06 
Biroujima 2012 April 14-16 330 0.52 

Night survey data (*), presence-absence data only (†) 

 

Table 2. Oceanographic characteristics of Japanese Murrelet encounter locations around each surveyed 

colony. SST = sea surface temperature, CHLA = chlorophyll-a concentration, BATHY = bathymetric 

depth, D_LAND = distance to land 

Colony  
No. of Japanese 

Murrelet encounters 
SST (°C) CHLA (mg m-3) BATHY (m) D_LAND (km) 

Izu 867 16.48 ± 0.61 0.58 ± 1.05 260.42 ± 186.25 6.92 ± 3.2 

Biroujima 330 17.25 ± 0.78 3.62 ± 2.89 33.81 ± 59.89 1.79 ± 2.32 

Kojine 10 17.78 ± 0.77 0.18 ± 0.04 224.7 ± 147.06 5.49 ± 3.21 

Oki 14 12.69 ± 0.06 0.44 ± 0.06 67.93 ± 22.63 3.34 ± 2 

 

 

Table 3. Selected variables and predictive ability of density models. r is the Pearson's correlation 

coefficient and p the Spearman'r rank correlation coefficient between predicted and observed densities, 

(train) is predicting upon data used in each model's construction, (test) is predicting upon independent 

data from the other colony (Biroujima to Izu and vice versa), : denotes an interaction term, all models 

included a sampling effort offset term. CHLA = chlorophyll-a concentration, D_COL = distance to 

colony, D_LAND = distance to land 

 



Model Variables  r (train) p (train) r (test) p 
(test) 

Biroujima colony 
(negative binomial GLM) 

D_COL + Year 0.46 0.48 0.12 0.15 

Izu colony  
(negative binomial GLMM) 

D_COL : Month  
+ (1 | Survey) 

0.30 0.23 0.25 0.36 

Izu foraging  
(poisson GLMM) 

D_LAND + CHLA 
+ (1 | Survey) 

0.25 0.22 - - 

 

 

Table 4. Japanese marine Important Bird and Biodiversity Areas (mIBAs) that include Japanese 

Murrelet colonies. Four radii are provided by density models: Model A, from Biroujima in 2009/2012; 

Model B, from Biroujima in 2008; Model C, from Northen Izu colonies in May and; Model D, from 

Northern Izu colonies in April. The extent of each radii (given in brackets under model name) is defined 

as the distance from the colony at which density is predicted to fall below 0.5 birds/km2. For each colony 

and the area of sea the radii cover and % of this area captured within each mIBA are reported 

Marine IBA site 
No. of 

murrelet 
colonies 

mIBA 
area 

(km2) 

Model A  
(9 km) 

Model B 
(18 km) 

Model C 
(27 km) 

Model D 
(39 km) 

   
Area 
(km2) 

% within 
mIBA 

Area 
(km2) 

% within 
mIBA 

Area 
(km2) 

% within 
mIBA 

Area 
(km2) 

% within 
mIBA 

Danjo Islands 1 14663 235 100 960 100 2175 100 4551 100 

Fumishima Islet 
and Oki Islands 

1 27323 197 100 853 100 1967 100 4417 90 

Northern Izu 
Islands 

8 4757 1443 100 4122 100 7093 67 11622 41 

Torishima Island 1 1174 231 100 955 100 2150 55 4482 26 

Tsukuejima Islets 1 254 208 100 779 33 1546 16 2745 9 

Eboshijima Islet 1 306 246 100 964 32 1868 16 3498 9 

Kanmurijima and 
Kutsujima Islets 

1 310 249 93 939 33 1836 17 3304 9 

Kii Nagashima 
Islets 

1 184 161 90 510 36 1020 18 2005 9 

Seinan Islands 2 284 251 78 898 32 1795 16 3530 8 

Nanatsujima Islets 2 319 315 94 1149 28 2313 14 4223 8 

Okinoshima  
Koyajima Islands 

1 308 247 100 993 31 2230 14 4670 7 

Biroujima Islet 1 154 188 82 646 24 1322 12 2541 6 

Hachijojima 1 266 217 100 911 29 2131 12 4546 6 



Island 

Total marine IBA 
network 

22 50302 4188 95 14679 52 29446 35 56134 25 

 
 

  



Figures 

 
 1 

 

Figure 1. Japanese Murrelet breeding colony locations in Japan and at-sea survey data undertaken 

around colonies at Kojine, Northern Izu islands, Biroujima and Oki. Overlapping density counts appear 

darker blue. See Appendix S1  for colony details 

 



 

Figure 2. Predicted Japanese Murrelet density (line) and 95% confidence interval (shade) against colony 

distance at a) the Northern Izu Islands in April (dotted line, blue shade) and May (solid line, pink shade); 

and b) Biroujima in 2008 (dotted line, blue shade) and 2009/2012 (solid line, pink shade) 

 



 

Figure 3. Predicted Japanese Murrelet density against colony distance from the Biroujima colony model 

(solid line), in 2009/2012 (Model A) and 2008 (Model B); and from the Izu colony model (dotted line), 

in May (Model C) and April (Model D). The colony distance is given at which density is predicted to 

fall below 0.5 birds/km2 for each model prediction 

 



 

Figure 4. Four radii from model predictions applied to Japanese Murrelet colony locations, and overlap 

with current Japanese marine IBA network. Each radii is defined as the maximum distance around 

Japanese Murrelet colonies at which murrelet density is predicted to be above 0.5 birds/km2. Radii are 

generated from predictions for: Biroujima in 2009/2012 (Model A); Biroujima in 2008 (Model B); 

Northen Izu colonies in May (Model C); and Northern Izu colonies in April (Model D) 

 

  



Supplement  

 

Table S1. Details of oceanographic variables used in modelling 

Variable 
code 

Variable Type Source Layers created 

SST Sea Surface 
Temperature 

Dynamic 
oceanographic 

MODIS Aqua  Terra; 
http://oceancolor.gsfc.nasa.gov/ 

5 (one per year: 
2008-2012) 

CHLA Chlorophyll-a 
Concentration 

Dynamic 
oceanographic 

MODIS Aqua  Terra; 
http://oceancolor.gsfc.nasa.gov/ 

14 (one per 
survey) 

G_SST SST gradient Dynamic 
oceanographic - 
derived 

MODIS Aqua  Terra; 
http://oceancolor.gsfc.nasa.gov/ 

5 (one per year: 
2008-2012) 

G_CHLA Chlorophyll-a 
gradient 

Dynamic 
oceanographic – 
derived 

MODIS Aqua  Terra; 
http://oceancolor.gsfc.nasa.gov/ 

14 (one per 
survey) 

Bathy Bathymetry Static GEBCO; 
http://www.gebco.net/ 

1 

Slope Seabed slope angle Static - derived GEBCO; 
http://www.gebco.net/ 

1 

D_Land Distance to land Static - derived GEBCO; 
http://www.gebco.net/ 

1 

D_Col Distance to colony Static - derived Survey data 1 
 

 

Table S2. Names and locations of all known Japanese Murrelet colonies within Japan, coordinates not 

disclosed for Seinan colonies for conservation purposes 



 

Figure S3. Bimodal distribution of Japanese Murrelet density (birds/km2) in relation to distance from 

colony (D_COL, km) around Northern Izu colonies. A clear break in murrelet observations is 

observed at 20km distance from colonies in both March (pink) and May (blue)

1 
 2 

Location (Island/Islet) Latitude Longitude Region 

Nanatsujima Oshima 37.61028791 136.9002056 Chubu 

Nanatsujima Aramikojima 37.58873089 136.876688 Chubu 

Kutsujima 35.70024392 135.4452896 Chubu 

Udonejima 34.47189184 139.294281 Northern Izu 
Niijima 34.43069985 139.2795181 Northern Izu 
Hanshima 34.32571722 139.2772865 Northern Izu 
Tadanaejima 34.20768528 139.1914558 Northern Izu 
Onbasejima  34.18695586 139.0754986 Northern Izu 
Onoharajima (Sanbondake) 34.048056 139.383889 Northern Izu 
Motone 33.851028 139.62001 Northern Izu 
Kojine 33.12993056 139.6986361 Central Izu 
Torishima 30.48344429 140.2885437 Southern Izu 

Mimianajima 34.18393831 136.3799429 Kansai 

Okinoshima koyajima 34.23146103 130.1111698 Kyushu 

Eboshijima 33.68963859 129.9828529 Kyushu 

Biroujima 32.46472948 131.7308807 Kyushu 

Danjogunto hanaguri 32.01127832 128.3615112 Kyushu 

Tsukuejima  33.68333333 130.2166667 Kyushu 

Oki  36.154 133.073 Oki 

Seinan 1 - - Shikoku 

Seinan 2 - - Chuugoku 

Takeshima /Dok  37.239167 131.868611 Japan/South Korea (disputed) 

 


