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In a general metric theory of gravitation in four dimensions, six polarizations of a gravitational wave are

allowed: two scalar and two vector modes, in addition to two tensor modes in general relativity. Such

additional polarization modes appear due to additional degrees of freedom in modified theories of

gravitation or theories with extra dimensions. Thus, observations of gravitational waves can be utilized

to constrain the extended models of gravitation. In this paper, we investigate detectability of additional

polarization modes of gravitational waves, particularly focusing on a stochastic gravitational-wave

background, with laser-interferometric detectors on the Earth. We found that more than three detectors

can separate the mixture of polarization modes in detector outputs, and that they have almost the same

sensitivity to each polarization mode of stochastic gravitational-wave background.
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I. INTRODUCTION

In recent years, direct detection experiments of a gravi-
tational wave (GW) have been well developed. The first
generation of a kilometer-scale ground-based laser-
interferometric GW detector, located in the United States
(LIGO), Europe (VIRGO and GEO 600), and Japan
(TAMA 300), has begun its search for gravitational waves
and has yielded scientific results: especially for a stochastic
gravitational-wave background (GWB), the upper limit on
the energy density has been obtained [1–3]. However, the
first detection of the GW has not been achieved yet. The
development of interferometers of the next generation,
such as AIGO [4], advanced LIGO [5], advanced VIRGO
[6], and LCGT [7], is underway. In the coming decade, a
direct detection of GWs will be made, and the GW experi-
ments will be a key observational tool to obtain valuable
information about astronomical objects and physics of the
early universe.

The direct observation of the GWs will also provide a
unique opportunity to test the theory of general relativity
(GR), through the propagation speed, waveforms, and
polarization modes of GWs. In GR, a GW has two polar-
ization modes (plus and cross modes), while in a general
metric theory of gravitation, the GW is allowed to have, at
most, six polarizations [8,9]. In the extended theory of
gravitation such as Brans-Dicke theory [10,11] and fðRÞ
gravity [12], the GW has additional polarization modes,
because of extra degrees of freedom involved with scalar
fields. In the theories with extra dimensions such as the
Kaluza-Klein theory and the Dvali-Gabadadze-Porrati

(DGP) braneworld model [13], gravitons are able to propa-
gate into extra dimensions, and have additional polariza-
tions. If additional polarizations are found, it indicates that
the theory of gravitation should be extended beyond GR,
and excludes some theoretical models, depending on which
polarization modes are detected. Thus, the observation of
the GW polarizations is a powerful tool to probe the
extended law of gravity and extra dimensions.
Subsequently, we can also investigate the accelerated ex-
pansion of the universe [14,15].
Currently, there are few observational constraints on the

additional polarization modes of GWs. For the scalar GWs,
the observed orbital-period derivative of PSR B1913þ 16
agrees well with predicted values of GR, conservatively, at
a level of 1% error [16], indicating that the contribution of
scalar GWs to the energy loss is less than 1%. Another
constraint on a scalar GWB has been obtained from the
amplitude of scalar perturbations in the Wilkinson micro-
wave anisotropy probe (WMAP) data, which corresponds
to h20�

S
gw & 10�12 [17,18], where the critical density of the

universe is �c ¼ 3H2
0=8�G and the Hubble constant is

H0 ¼ 100h0 km s�1 Mpc�1.
On the other hand, little work on a direct search has been

done so far, except for the recent work by Lee, Jenet, and
Price [19]. The authors have investigated the detectability
of non-Einsteinian (non-GR) polarizations of a GWB at the
frequencies, �10�8 Hz, with pulsar timing, and showed
that the non-Einsteinian polarizations can be discriminated
with 40–60 stable pulsars. In this paper, using multiple
laser-interferometric GW detectors on the Earth (at
�100 Hz), we present a method for separating a mixture
of the polarization modes of the GWB and detecting non-
tensorial polarization modes.*atsushi.nishizawa@nao.ac.jp
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This paper is organized as follows. In Sec. II, we define
the six polarization modes of a GW. In Sec. III, we inves-
tigate the response of a single detector to the GW prop-
agating in a certain direction with each polarization mode.
In Sec. IV, we focus on a GWB and describe cross corre-
lation between two detectors, extending the analysis to the
nontensorial polarizations. Then, we discuss an optimal
location and orientation of the detectors, and the detect-
ability of the GWB with a single polarization mode. In
Sec. V, we consider the separation of a polarization mode
using multiple detectors, which is the main subject of this
paper, and estimate the detector sensitivity to the GWB for
various combinations of multiple detectors. Finally,
Sec. VI is devoted to conclusions and discussions for future
prospects.

II. GW POLARIZATION MODES

In general, a metric gravity theory in four dimensions
allows, at most, six polarization modes of a GW [8,9]. If a
spacetime includes extra dimensions, the number of polar-
ization modes can be more than six. However, once the
polarizations are projected onto our 3-space, the polariza-
tions we observe are degenerate and are classified into six
polarizations. For the GW propagating in the z direction,
the bases of the six polarizations are defined by (x, y, and z
components are from the left to the right or the top to the
bottom in the tensors)

~eþ
ij ¼

1 0 0
0 �1 0
0 0 0

0
@

1
A; ~e�ij ¼

0 1 0
1 0 0
0 0 0

0
@

1
A;

~ebij ¼
1 0 0
0 1 0
0 0 0

0
@

1
A; ~e‘ij ¼

ffiffiffi
2

p 0 0 0
0 0 0
0 0 1

0
@

1
A;

~exij ¼
0 0 1
0 0 0
1 0 0

0
@

1
A; ~eyij ¼

0 0 0
0 0 1
0 1 0

0
@

1
A;

(1)

where þ, �, b, ‘, x, and y denote plus, cross, breathing,
longitudinal, vector-x, and vector-y modes, respectively.
The tildes are fixed to represent that the polarizations are
defined in our 3-space, not in a spacetime with extra
dimensions. Each polarization mode is orthogonal to one

another and is normalized so that ~eAij~e
ij
A0 ¼ 2�AA0 , A, A0 ¼

þ, �, b, ‘, x, and y. Note that the breathing and longitu-
dinal modes are not traceless, in contrast to the ordinary
plus and cross polarization modes in GR. In Fig. 1, we
illustrate how each GW polarization affects test masses
arranged on a circle. According to rotation symmetry
around the propagation axis of the GW, theþ and�modes
can be identified with tensor-type (spin-2) GWs, the x and

y modes are vector-type (spin-1) GWs, and the b and ‘
modes are scalar-type (spin-0) GWs.
The polarization modes in various alternative theories

are summarized in Table I. All polarizations do not neces-
sarily appear in all theoretical models. Most of the gravity
theories in cosmologically interesting situations are the
variant of the scalar-tensor theory, where no vector polar-
ization appears.

FIG. 1 (color online). Six GW polarizations in a general metric
theory of gravitation. The two ellipses (or circles) show the
effect of a GW with each polarization on test masses arranged on
a circle at the moments of different phases by �. The circled dot
and the arrow represent the propagating direction of the GW.

TABLE I. GW polarization modes in various theories.

Theoretical model ~eþij ~e�ij ~ebij ~e‘ij ~exij ~eyij Refs.

GR in a noncompactified

5D Minkowski spacetime

� � �a �a � � � � �

GR in a noncompactified

6D Minkowski spacetime

� � � � � � � � �

5D Kaluza-Klein theory � � � � � � � � [20]

Randall-Sundrum braneworld � � � � � � � � � � � � � � [21]

DGP braneworld (normal branch) � � � � � � � � � � � � � � [22]

DGP braneworld

(self-accelerating branch)

� � �b �b � � [22]

Brans-Dicke theory � � �b �b � � � � � � [23,24]
fðRÞ gravity � � �b �b � � � � � � [17,25]
Bimetric theory � � �b �b � � [26]

aIn a general five-dimensional spacetime, two scalar modes are
correlated and behave as 1 degree of freedom.
bIn the case that graviton is massless (mg ¼ 0), the longitudinal
mode vanishes. On the other hand, in the case of massive
graviton (mg � 0), the breathing and longitudinal modes are
correlated.
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III. RESPONSE OF A SINGLE GW DETECTOR

In this section, as preliminaries of later analysis, we
consider the response of a single detector to a GW prop-
agating in a certain direction. A perturbed metric hij,

which represents the GW propagating in three-dimensional
space, is decomposed into the six polarization modes as

hijð!t� ~k � ~xÞ ¼ hþð!t� ~k � ~xÞ~eþij þ h�ð!t� ~k � ~xÞ~e�ij
þ hbð!t� ~k � ~xÞ~ebij þ h‘ð!t� ~k � ~xÞ~e‘ij
þ hxð!t� ~k � ~xÞ~exij þ hyð!t� ~k � ~xÞ~eyij;

where hA, A ¼ þ, �, b, ‘, x, and y are the amplitudes of
GWs for each mode.

Although a detector output actually depends on the GW
amplitude determined by a specific theoretical model, we
can discuss the detector response to each GW polarization
without specifying a certain theoretical model. The angular
pattern function of a detector to GWs is given by

FAð�̂Þ ¼ D: ~eAð�̂Þ; D ¼ 1
2½û � û� v̂ � v̂�; (2)

where the symbol : denotes contraction between tensors,
and D is a so-called detector tensor, which describes the
response of a laser-interferometric detector and maps the
gravitational metric perturbation to a GW signal from the
detector. The unit vectors û and v̂ are orthogonal to each
other and are directed to each detector arm, which form an
orthonormal coordinate system with the unit vector ŵ, as

shown in Fig. 2. �̂ is the unit vector directed at the GW
propagation direction. Note that the detector tensor,
Eq. (2), is valid only when the arm length of the detector
is much smaller than the wavelength of GWs that we
consider. This is relevant for our purpose to deal with the
ground-based laser interferometers.

Suppose that an orthonormal coordinate system for the
detector is

û ¼ ð1; 0; 0Þ; v̂ ¼ ð0; 1; 0Þ; ŵ ¼ ð0; 0; 1Þ;
and the GW coordinate system rotated by angles ð�;�Þ is

û 0 ¼ ðcos� cos�; cos� sin�;� sin�Þ;
v̂0 ¼ ð� sin�; cos�; 0Þ;
ŵ0 ¼ ðsin� cos�; sin� sin�; cos�Þ:

The most general choice of the coordinates is obtained by
the rotation with respect to the angle c around the GW-
propagating axis,

m̂ ¼ û0 cosc þ v̂0 sinc ; n̂ ¼ �v̂0 sinc þ û0 cosc ;

�̂ ¼ ŵ0:

The coordinate system ðû; v̂; ŵÞ is related to the coordinate
system ðm̂; n̂; �̂Þ by the rotation angles ð�; �; c Þ, shown in
Fig. 2. Using the unit vectors m̂, n̂, and �̂, the polarization
tensors in Eq. (1) can be written as

~eþ ¼ m̂ � m̂� n̂ � n̂; ~e� ¼ m̂ � n̂þ n̂ � m̂;

~eb ¼ m̂ � m̂þ n̂ � n̂; ~e‘ ¼
ffiffiffi
2

p
�̂ � �̂;

~ex ¼ m̂ � �̂þ �̂ � m̂; ~ey ¼ n̂ � �̂þ �̂ � n̂:

Then, from Eqs. (2), the angular pattern functions for
each polarization result in

Fþð�;�; c Þ ¼ 1
2ð1þ cos2�Þ cos2� cos2c

� cos� sin2� sin2c ; (3)

F�ð�;�; c Þ ¼ �1
2ð1þ cos2�Þ cos2� sin2c

� cos� sin2� cos2c ; (4)

Fxð�;�; c Þ ¼ sin�ðcos� cos2� cosc � sin2� sinc Þ;
(5)

Fyð�;�; c Þ ¼ � sin�ðcos� cos2� sinc þ sin2� cosc Þ;
(6)

Fbð�;�Þ ¼ �1
2sin

2� cos2�; (7)

F‘ð�;�Þ ¼ 1ffiffiffi
2

p sin2� cos2�: (8)

From the dependence on the angle c , the þ and � modes
are tensor type (spin-2), the x and y modes are vector type
(spin-1), and the b and ‘ modes are scalar type (spin-0).
The angular pattern functions of the breathing and longi-
tudinal modes are completely degenerated, which prohibits
one to decompose the two scalar modes with a laser-
interferometric GW detector. We plot the angular pattern
functions for each nontensorial polarization in Fig. 3, and
the angular pattern functions for the tensor, vector, and
scalar modes in Fig. 4. These results are consistent with
those obtained in [27–29].FIG. 2 (color online). Coordinate systems.
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FIG. 3 (color online). Angular pattern functions of a detector for each polarization. (a) Plus mode jFþj, (b) cross mode jF�j, (c) x
mode jFxj, (d) y mode jFyj, and (e) longitudinal mode jF‘j. The angular pattern function of the breathing mode is the same as that of

the longitudinal mode except for an overall factor 1=
ffiffiffi
2

p
. At the center of the figure, the arms of an interferometer are shown.
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IV. CROSS CORRELATION

We focus on a stochastic GWB [30], based on the
detector responses obtained in the previous section, and
discuss cross correlation between a pair of detectors.

A. Correlation analysis

To distinguish the GWB signal from stochastic detector
noise independent in each detector, one has to correlate
signals between two detectors. The correlation analysis has
been well developed by several authors [31–33]. In this
section, we extend the method to the nontensorial
polarizations.

At a position ~X, the gravitational metric perturbations in
our 3-space are given by

h ðt; ~XÞ ¼X
A

Z
S2
d�̂

Z 1

�1
df~hAðf;�̂Þe2�ifðt��̂� ~X=cÞ~eAð�̂Þ;

(9)

where ~hAðf; �̂Þ is the Fourier transform of the GW ampli-
tude with polarizations A ¼ þ,�, b, ‘, x, and y. In Eq. (9),
we assumed that gravitons propagate with the speed of
light in our 3-space. Strictly speaking, gravitons propagate
with the speed less than that of light, if they are massive in
some modified gravity theories or are projected onto our 3-
space in the presence of extra dimensions. However, the
mass is constrained by several observations of the galaxy
[34], the solar system [35], and binary pulsars [36]. The
limits from the galaxy and the solar system are obtained
from the observation in static gravitational fields, while the
limit of binary pulsars comes from the change of the orbital
period of the binary pulsars (PSR B1913þ 16 and PSR
B1534þ 12), in dynamical gravitational fields. (The limit
from the galaxy is the most stringent, but may be less
robust.) Thus, here we adopt the binary pulsar bound.

Finn and Sutton [36] considered energy loss from the
binary system by emission of massive gravitons, and ob-
tained the limit on the mass of gravitons, ðmg=!orbitÞ2 <
0:003, where !orbit is the orbital frequency of the binary.
This limit implies

vg

c
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

�
mg

!orbit

�
2

s
* 0:998:

The gravitons cannot change their speed by more than
0.2% from the speed of light. Thus, setting vg ¼ c does

not affect cross-correlation analysis qualitatively.
Hereafter we set vg ¼ c.

Using Eqs. (2) and (9), GW signal hðtÞ can be written as

hðt; ~XÞ¼X
A

Z
S2
d�̂

Z 1

�1
df~hAðf;�̂Þe2�ifðt��̂� ~X=cÞFAðf;�̂Þ:

(10)

Thus, the Fourier transform of Eq. (10) is

~hðfÞ ¼ X
A

Z
S2
d�̂~hAðf; �̂Þe�2�if�̂� ~X=cFAðf; �̂Þ: (11)

We assume that a stochastic GWB is (i) isotropic,
(ii) independently polarized (not correlated between polar-
izations) [37], (iii) stationary, and (iv) Gaussian, which are
discussed in [33]. Then, all the statistical properties of the
GWB are characterized by

h~h�Aðf; �̂Þ~hA0 ðf0; �̂0Þi ¼ �ðf� f0Þ 1

4�
�2ð�̂; �̂0Þ�AA0

� 1

2
SAh ðjfjÞ; (12)

where �2ð�̂; �̂0Þ 	 �ð���0Þ�ðcos�� cos�0Þ, and h� � �i
denotes the ensemble average. SAh ðfÞ is the one-sided

power spectral density of each polarization mode.

FIG. 4 (color online). Angular pattern functions of a detector for the tensor, vector, and scalar modes. The plots from the left areffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2þ þ F2�

q
,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2
x þ F2

y

q
, and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2
b þ F2

‘

q
, respectively.
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Conventionally, the amplitude of GWB for each polar-
ization is characterized by an energy density per logarith-
mic frequency bin, normalized by the critical energy
density of the Universe:

�A
gwðfÞ 	 1

�c

d�A
gw

d lnf
; (13)

where �c ¼ 3H2
0=8�G and H0 is the Hubble constant.

�gwðfÞ is related to ShðfÞ by [33,38]

�A
gwðfÞ ¼

�
2�2

3H2
0

�
f3SAh ðfÞ: (14)

Note that the above definition is different from that in the
literature [33,38], by a factor of 2, since it is defined for
each polarization. It is convenient to represent the energy
density with the form h20�gwðfÞ by parametrizing the

Hubble constant as H0 ¼ 100h0 km s�1 Mpc�1. We as-
sume that þ and � modes are not polarized. (The detect-
ability of circular polarizations in the polarized case has
been discussed in [39–42].) We also assume that x and y
modes are not polarized. In most of the cosmological
scenarios, these assumptions are valid. Then, the GWB
energy density of tensor, vector, and scalar modes can be
written as

�T
gw 	 �þ

gw þ��
gw ð�þ

gw ¼ ��
gwÞ; (15)

�V
gw 	 �x

gw þ�y
gw ð�x

gw ¼ �y
gwÞ; (16)

�S
gw 	 �b

gw þ�‘
gw ¼ �b

gwð1þ �Þ; (17)

where the ratio of the energy density in the longitudinal
mode to that in the breathing mode is characterized by the
parameter � 	 �‘

gw=�
b
gw.

Let us consider the outputs of a detector, sðtÞ ¼ hðtÞ þ
nðtÞ, where hðtÞ and nðtÞ are the GW signal and the noise of
a detector. We assume that the amplitude of GWB is much
smaller than detector noise. Cross-correlation signal Y
between two detectors is defined as

Y 	
Z T=2

�T=2
dt

Z T=2

�T=2
dt0sIðtÞsJðt0ÞQðt� t0Þ; (18)

where sI and sJ are outputs from the Ith and Jth detectors,
and T is observation time. Qðt� t0Þ is a filter function,
which is later introduced so that the signal-to-noise ratio
(SNR) is maximized. In terms of the Fourier representa-
tion, we obtain

Y ¼
Z 1

�1
df

Z 1

�1
df0�Tðf� f0Þ~s�I ðfÞ~sJðf0Þ ~Qðf0Þ; (19)

where ~s1ðfÞ, ~s2ðfÞ, and ~QðfÞ are the Fourier transforms of
s1ðtÞ, s2ðtÞ, and Qðt� t0Þ, respectively. The function �TðfÞ
is defined by

�TðfÞ 	
Z T=2

�T=2
dte�2�ift ¼ sinð�fTÞ

�f
:

In the above derivation, we took the limit of large T for one
of the integrals. This is justified by the fact that, in general,
Qðt� t0Þ rapidly decreases for large jt� t0j. In the absence
of intrinsic noise correlation, the correlation signal ob-
tained above ideally has a contribution from only the
GWs. Thus, taking the ensemble average of Eq. (19) leads
to

� 	 hYi
¼

Z 1

�1
df

Z 1

�1
df0�Tðf� f0Þh~h�I ðfÞ~hJðf0Þi ~Qðf0Þ:

(20)

Substituting Eq. (11) into Eq. (20) and using Eqs. (12) and
(14), we obtain

� ¼ 3H2
0

4�2
T
Z 1

�1
df

X
A

jfj�3�A
gwðfÞ

�
�Z

S2

d�̂

4�
FA
I F

A
J e

2�if�̂�� ~X=c

�
~QðfÞ

¼ 3H2
0

20�2
T
Z 1

�1
dfjfj�3½�T

gw�
T þ�V

gw�
V

þ 	�S
gw�

S� ~QðfÞ; (21)

where we defined

� ~X 	 ~XI � ~XJ;

and

	 	 1

3

�
1þ 2�

1þ �

�
:

The parameter 	 is in the range 1=3 
 	 
 2=3 and char-
acterizes the ratio of the energy in the longitudinal mode to
the breathing mode. We also defined overlap reduction
functions

�T
IJðfÞ 	

5

2

Z
S2

d�̂

4�
e2�if�̂�� ~X=cðFþ

I F
þ
J þ F�

I F
�
J Þ; (22)

�V
IJðfÞ 	

5

2

Z
S2

d�̂

4�
e2�if�̂�� ~X=cðFx

IF
x
J þ Fy

IF
y
JÞ; (23)

�S
IJðfÞ 	

15

1þ 2�

Z
S2

d�̂

4�
e2�if�̂�� ~X=cðFb

I F
b
J þ �F‘

IF
‘
JÞ:
(24)

These functions are normalized so that they give unity in
the low-frequency limit, which is easily verified by using
Eqs. (3)–(8). The overlap reduction function represents
how much degree of correlation between detectors in the
GW signal is preserved.
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Next, we will calculate the variance of the correlation
signal. Here we assume that noises in two detectors do not
correlate at all and that the magnitude of the GW signal is
much smaller than that of noise. Consequently, the vari-
ance of the correlation signal is


2 	 hY2i � hYi2 � hY2i; (25)

where the weak-signal assumption for the GWB is used.
Then, using Eq. (19), it follows


2 �
Z 1

�1
df

Z 1

�1
df0 ~QðfÞ ~Qðf0Þh~s�I ðfÞ~sJðfÞ~s�I ðf0Þ~sJðf0Þi

�
Z 1

�1
df

Z 1

�1
df0 ~QðfÞ ~Q�ðf0Þh~n�I ðfÞ~nIðf0Þi

� h~nJðfÞ~n�Jðf0Þi
� T

4

Z 1

�1
dfPIðjfjÞPJðjfjÞj ~QðfÞj2; (26)

where the one-sided power spectrum density of noise is
defined by

h~n�I ðfÞ~nIðf0Þi 	 1
2�ðf� f0ÞPIðjfjÞ; i ¼ 1; 2:

Now we can determine the form of the optimal filter
~QðfÞ. Equations (21) and (26) are expressed more simply,
using an inner product

ðA; BÞ 	
Z 1

�1
dfA�ðfÞBðfÞPIðjfjÞPJðjfjÞ;

as

� ¼ 3H2
0

20�2
T

�
~Q;

�ðjfjÞ�gwðjfjÞ
jfj3PIðjfjÞPJðjfjÞ

�
; (27)


2 � T

4
ð ~Q; ~QÞ; (28)

where �T
gw�

T þ�V
gw�

V þ 	�S
gw�

S is simply written by

��gw. From Eqs. (27) and (28), the SNR for GWB is

defined as SNR 	 �=
. Therefore, the filter function,
which maximizes the SNR, turns out to be

~QðfÞ ¼ K
�ðfÞ�gwðjfjÞ

jfj3PIðjfjÞPJðjfjÞ
; (29)

with an arbitrary normalization factor K. Applying this
optimal filter to the above equations, we obtain the optimal
SNR

SNR ¼ 3H2
0

10�2

ffiffiffiffi
T

p �Z 1

�1
df

�2ðjfjÞ�2
gwðjfjÞ

f6PIðjfjÞPJðjfjÞ
�
1=2

; (30)

where �gw� ¼ �T
gw�

T þ�V
gw�

V þ 	�S
gw�

S.

B. Overlap reduction function

Here we present the analytical expressions for the over-
lap reduction functions given in Eqs. (22)–(24), performing
the angular integrals by expanding the overlap reduction

functions with tensorial bases. Following [33], they are, in
general, expressed in terms of the detector tensorDij, and a

unit vector d̂i, defined by d̂i 	 � ~X=j� ~Xj:
�M
IJðfÞ ¼ �M

1 ð�ÞDij
I D

J
ij þ �M

2 ð�ÞDi
I;kD

kj
J d̂id̂j

þ �M
3 ð�ÞDij

I D
k‘
J d̂id̂jd̂kd̂‘; (31)

M ¼ T, V, and S, together with

�T
1

�T
2

�T
3

0
B@

1
CA ¼ 1

14

28 �40 2
0 120 �20
0 0 35

0
@

1
A j0

j2
j4

0
@

1
A;

for the tensor mode,

�V
1

�V
2

�V
3

0
B@

1
CA ¼ 2

7

7 5 �2
0 �15 20
0 0 �35

0
@

1
A j0

j2
j4

0
@

1
A;

for the vector mode, and

�S
1

�S
2

�S
3

0
B@

1
CA ¼ 1

7

14 20 6
0 �60 �60
0 0 105

0
@

1
A j0

j2
j4

0
@

1
A; (32)

for the scalar mode. Details of the derivation are summa-
rized in Appendix A. Here, jnð�Þ is the spherical Bessel
function with its argument given by

�ðfÞ 	 2�fj� ~Xj
c

:

To further investigate the dependence of the overlap
reduction function on the detector configurations, espe-
cially for ground-based detectors, we introduce the coor-
dinate system on the Earth shown in Fig. 5. This coordinate
system significantly simplifies the expression in Eq. (31).
The relative location and orientation of two detectors are
characterized by the three parameters, ð�;
1; 
2Þ. The� is
the separation angle between two detectors, measured from
the center of the Earth. The angles 
1 and 
2 are the
orientations of the bisector of two arms of each detector,
measured in a counterclockwise manner relative to the

FIG. 5 (color online). Coordinate system on the Earth for a
detector pair.
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great circle connecting the two detectors. The distance
between two detectors is given by

j�Xj ¼ 2RE sin
�

2
;

where the radius of the Earth is RE ¼ 6371 km. Defining
new parameters,


þ 	 
1 þ 
2

2
; 
� 	 
1 � 
2

2
;

we can completely fix the relative position and orientation
of a detector pair by the three parameters, ð�;
þ; 
�Þ. In
the coordinate system on the Earth, the overlap reduction
functions, Eq. (31), can be reduced to

(i) Tensor mode

�Tð�;�;
þ; 
�Þ ¼ �Tþð�;�Þ cosð4
þÞ
þ�T�ð�;�Þ cosð4
�Þ; (33)

�Tþð�;�Þ 	 �
�
3

8
j0 � 45

56
j2 þ 169

896
j4

�

þ
�
1

2
j0 � 5

7
j2 � 27

224
j4

�
cos�

�
�
1

8
j0 þ 5

56
j2 þ 3

896
j4

�
cos2�; (34)

�T�ð�;�Þ 	
�
j0 þ 5

7
j2 þ 3

112
j4

�
cos

�
�

2

�
4
: (35)

(ii) Vector mode

�Vð�;�;
þ; 
�Þ ¼ �Vþð�;�Þ cosð4
þÞ
þ�V�ð�;�Þ cosð4
�Þ; (36)

�Vþð�;�Þ 	 �
�
3

8
j0 þ 45

112
j2 � 169

224
j4

�

þ
�
1

2
j0 þ 5

14
j2 þ 27

56
j4

�
cos�

�
�
1

8
j0 � 5

112
j2 � 3

224
j4

�
cos2�;

(37)

�V�ð�;�Þ 	
�
j0 � 5

14
j2 � 3

28
j4

�
cos

�
�

2

�
4
: (38)

(iii) Scalar mode

�Sð�;�; 
þ; 
�Þ ¼ �Sþð�;�Þ cosð4
þÞ
þ�S�ð�;�Þ cosð4
�Þ; (39)

�Sþð�;�Þ 	 �
�
3

8
j0 þ 45

56
j2 þ 507

448
j4

�

þ
�
1

2
j0 þ 5

7
j2 � 81

112
j4

�
cos�

�
�
1

8
j0 � 5

56
j2 þ 9

448
j4

�
cos2�; (40)

�S�ð�;�Þ 	
�
j0 � 5

7
j2 þ 9

56
j4

�
cos

�
�

2

�
4
: (41)

C. Overlap reduction functions of specific detectors

Let us consider the overlap reduction functions for an
existing detector pair on the Earth. Given the relative
coordinates ð�;
þ; 
�Þ of a detector pair, the overlap
reduction functions can be plotted as a function of
frequency.
The positions and orientations of the currently operating

and planned kilometer-size interferometers are listed in
Table II. To specify the detector positions on the Earth,
we use a spherical coordinate system ð�;�Þ with which the
north pole is at � ¼ 0�, and � represents the longitude.
The orientation angle c is the angle between the local east
direction and the bisecting line of two arms of each detec-
tor measured counterclockwise. Hereafter we will consider
only advanced (the second-generation) detectors: AIGO
[4], LCGT [7], advanced LIGO (H1) and LIGO (L1) [5],
and advanced VIRGO [6], because the pairs of the ad-
vanced interferometers are more sensitive to a GWB and
have more opportunity to detect a GWB. From the posi-
tions and orientations in Table II, the relative positions and
orientations ð�;
þ; 
�Þ for each detector pair are deter-
mined, and are listed in Table III. The combinations are
also illustrated in Fig. 6. The overlap reduction functions,
calculated with the parameter set ð�;
þ; 
�Þ for a real-
detector pair, are shown in Figs. 7 and 8.
The overlap reduction functions start to oscillate and

decay rapidly above the characteristic frequency fc, given
by fc 	 c=ð2j�XjÞ. Numerical values of fc for specific
detector pairs are listed in Table III. At low frequencies, the
functions approach constant values, whose values are de-

TABLE II. Positions and orientations of kilometer-sized inter-
ferometers on the Earth (in units of degree), provided in [42].

Interferometer � � c

AIGO (A) 121.4 115.7 �45:0
LCGT (C) 53.6 137.3 70.0

LIGO-H1 (H) 43.5 �119:4 171.8

LIGO-L1 (L) 59.4 �90:8 243.0

VIRGO (V) 46.4 10.5 116.5

TAMA300 (T) 54.3 139.5 225.0

GEO600 (G) 47.7 9.8 68.8
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termined by the relative orientation of the detector pair.
The difference of the behavior between the polarization
modes appears at around the characteristic frequency.
Mathematically, this is because the coefficients of j0 in
Eqs. (34), (35), (37), (38), (40), and (41) are exactly the
same, while the coefficients of j2 and j4 are different (j0 !
1, j2 ! 0, and j4 ! 0). At much higher frequencies, since
the overlap reduction function significantly reduces, the
most interesting frequency range is around the character-
istic frequency, e.g., �10–100 Hz for the detectors on the
Earth.

D. Optimal detector configuration

There are three parameters specifying the detector con-
figuration. We seek an optimal detector configuration,
which maximizes the SNR given in Eq. (30). From the
overlap reduction function in Eqs. (33), (36), and (39), the
optimal configuration of the detectors can be classified into
two types:

type ðiÞ: cosð4
þÞ ¼ � cosð4
�Þ ¼ 
1;

type ðiiÞ: cosð4
þÞ ¼ cosð4
�Þ ¼ 
1;

which are illustrated in Fig. 9. In type (i), the solutions are

1 ¼ �=4mod�,
2 ¼ ��=4mod� for the plus sign, and

1 ¼ �=4mod�, 
2 ¼ ��=4mod� for the minus sign.
This means that the great circle connecting two detectors is
parallel to one of the arms of both detectors. As for
type (ii), the solutions are 
1 ¼ 0mod�, 
2 ¼ 0mod�
for the plus sign, and 
1 ¼ �=2mod�, 
2 ¼ 0mod� for
the minus sign. This corresponds to the case in which the
great circle connecting two detectors is parallel to the
bisector of the two arms of each detector, or is directed
in the orientations that one of the detectors is rotated by
multiples of �=2 from the former. Therefore, the optimal
configuration is realized when one of the arms of the two
detectors is parallel or rotated by multiples of 45 degrees,
relative to the great circle connecting two detectors. Note
that both types of the configurations are not simultaneously
optimal one. Whether the configuration is optimal or not
depends on the signs of the functions�Mþ and�M�,M ¼
T, V, S.

E. SNR

We calculate the SNR for each mode with two detectors,
assuming that only one polarization mode (tensor, vector,
or scalar mode) exists. The separation of the polarization
modes is addressed in the next section.
The SNR for each polarization mode can be calculated

by using the formula, Eq. (30). As for the power spectra of
the detector noise PIðfÞ, we assume that, for simplicity, all
advanced detectors (A, C, H, L, V) have the same noise as
that of advanced LIGO. The analytical fit of the noise
power spectrum of the advanced LIGO, based on [43], is
given by [42]

FIG. 6 (color online). Relative positions and orientations of a specific detector pair. The left panel shows the combinations
ðcos4
�; cos4
þÞ. The right panel shows the combinations ð�; cos4
þÞ. The possible optimal configuration, types (i) and (ii), are
also shown in the left panel.

TABLE III. Relative positions and orientations of detector
pairs on the Earth (in units of degree), and separation between
two detectors and the characteristic frequency of the overlap
reduction function. Each detector is represented by initial letters
indicated in Table II.

Detector pair � 
þ 
� Separation (km) fc (Hz)

A-C 70.8 31.4 31.9 7:38� 103 20

A-H 135.6 45.1 53.7 1:18� 104 13

A-L 157.3 2.1 38.0 1:25� 104 12

A-V 121.4 60.8 20.2 1:11� 104 13

C-H 72.4 25.6 89.1 7:52� 103 20

C-L 99.2 68.1 42.4 9:71� 103 15

C-V 86.6 5.6 28.9 8:74� 103 17

H-L 27.2 62.2 45.3 3:00� 103 51

H-V 79.6 55.1 61.1 8:16� 103 18

L-V 76.8 83.1 26.7 7:91� 103 19
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PðfÞ ¼
8><
>:
10�44ð f

10 HzÞ�4 þ 10�47:25ð f
100 HzÞ�1:7 Hz�1 for 10 Hz 
 f 
 240 Hz;

10�46ð f
1000 HzÞ3 Hz�1 for 240 Hz 
 f 
 3000 Hz;

1 otherwise:

In the SNR calculation, we assume that the �gw is inde-
pendent of frequency, i.e.,�gw is const. It is useful to write
the results for each mode with normalized SNR, defined by

normalized SNR ¼ SNRð�Þ
SNRð� ¼ 0Þ ;

where

SNR ð� ¼ 0Þ � 9:7�
�

T

3 yr

�
1=2

�
h20�gw

10�9

�
;

(h20�gw has to be replaced with 	h20�gw for the scalar

mode). Note that the above value of SNRð� ¼ 0Þ is iden-
tical for each polarization mode, because of the degeneracy
of them at the low frequencies.
In Fig. 10, the normalized SNRs for the possible optimal

configuration of detector pairs, types (i) and (ii), are shown
as a function of �. Interestingly, most of the detector pairs
have almost the same sensitivity to the three modes. In
Fig. 11, the optimal SNR, maxfSNRjtypeðiÞ;SNRjtypeðiiÞg, is
shown as a function of �, together with SNRs of specific
detector pairs for each mode. The SNRs of the specific
detector pairs, except for AIGO-LIGO (H1) and AIGO-
LIGO (L1) pairs, are smaller than the optimal one due to

FIG. 7 (color online). Overlap reduction functions for real-detector pairs on the Earth. Each curve shows the tensor mode (solid lines,
red), the vector mode (dotted lines, green), and the scalar mode (dashed lines, blue).
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the incomplete coincidence of the detector orientations. It
is interesting to note that the SNR of the optimal detector
configuration for the scalar mode is enhanced at the dis-
tance relatively close, while that for the tensor mode is
enhanced at the distance relatively far. This feature can be

intuitively interpreted by the angular responses of the
detector shown in Fig. 4. At �� �=2, the angular re-
sponses of the tensor mode between two detectors are
less overlapped than those of the scalar and vector modes.
On the other hand, at �� �, the angular responses of the
tensor mode between two detectors are more overlapped.

FIG. 10 (color online). Normalized SNRs of the detector pair
of type (i) (solid lines) and type (ii) (dotted lines) as a function of
�. The tensor, vector, and scalar modes are represented by red,
green, and blue curves, respectively, as indicated on the right
side of the figure.

FIG. 9 (color online). Optimal configurations of a detector
pair. For a fixed orientation of the interferometer 1, all possible
orientations of the optimal interferometer 2 for a fixed separation
� are illustrated.

FIG. 8 (color online). Overlap reduction functions for real-detector pairs on the Earth. Each curve shows the tensor mode (solid lines,
red), the vector mode (dotted lines, green), and the scalar mode (dashed lines, blue).
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SNRs with a specific detector pair are tabulated in
Table IV. As anticipated from Fig. 11, a laser-
interferometric GW detector is sensitive to a GWB with
the nontensorial polarizations, having almost the same
SNR as the tensor mode.

For further understanding of the distance dependence of
each polarization mode, it is helpful to consider an anti-
podal detector pair on a virtual earth with an arbitrary
radius R. The SNRs of the antipodal detector pair depend
only on the distance between the detectors. In the antipodal

case, setting � ¼ � and 
þ ¼ �=4 (
1 ¼ 0 and 
2 ¼
�=2) gives the overlap reduction functions,

�T ¼ j0 � 10

7
j2 þ 1

14
j4; �V ¼ j0 þ 5

7
j2 � 2

7
j4;

�S ¼ j0 þ 10

7
j2 þ 3

7
j4:

The separation between the detectors is

D 	 j� ~Xj ¼ 2R: (42)

Given the overlap reduction functions, we can compute
normalized SNRs, which are shown in Fig. 12. The SNRs
monotonically decrease proportional to the separation be-
tween the detectors. At relatively small distance, the SNR
for each polarization mode is comparable to each other,
while at relatively large distance, the SNR of the tensor
mode shows slower decay than that of other modes.

V. MODE SEPARATION

In practical observation of a stochastic GWB, three
polarization modes of a GWB are mixed in the detector
cross-correlation signal. The decomposition of the modes
is an important issue. In this section, in the presence of all
polarization modes (tensor, vector, and scalar), we discuss
how to separately detect each polarization mode of the
stochastic GWB.
Let us consider the case in which three detectors are

available. From Eq. (19), the cross-correlation signal be-
tween the Ith and the Jth detectors is given by

�IJ ¼ hYIJi ¼
Z 1

�1
dfh~s�I ðfÞ~sJðfÞi ~QðfÞ: (43)

TABLE IV. Detectable GWB (SNR ¼ 5) with a real-detector
pair in the presence of a single polarization mode. The obser-
vation time is selected as T ¼ 3 yr.

Detector pair h20�
T
gw h20�

V
gw 	h20�

S
gw

A-C 8:6� 10�9 8:6� 10�9 4:5� 10�9

A-H 3:6� 10�9 1:1� 10�8 7:3� 10�9

A-L 3:4� 10�9 1:2� 10�8 8:8� 10�9

A-V 8:7� 10�9 2:1� 10�8 1:4� 10�8

C-H 1:2� 10�8 8:4� 10�9 8:4� 10�9

C-L 4:5� 10�8 2:8� 10�8 2:5� 10�8

C-V 5:7� 10�9 6:9� 10�9 4:7� 10�9

H-L 1:6� 10�9 2:0� 10�9 1:7� 10�9

H-V 7:1� 10�9 7:5� 10�9 4:5� 10�9

L-V 6:7� 10�9 6:4� 10�9 4:3� 10�9

FIG. 12 (color online). Normalized SNR of an antipodal de-
tector pair as a function of the separation D. The tensor, vector,
and scalar modes are represented by solid (red), dotted (green),
and dashed (blue) curves, respectively. In the case of the (real)
Earth, the separation is D � 1:27� 104 km.

FIG. 11 (color online). Normalized SNRs of the optimal and
real-detector pairs as a function of �. Each curve shows
maxfSNRjtypeðiÞ; SNRjtypeðiiÞg for the tensor mode (solid line,

red), the vector mode (dotted line, green), and the scalar mode
(dashed line, blue). The squares (red), diamonds (green), and
triangles (blue) are the normalized SNRs of real-detector pairs
for the tensor, vector, and scalar modes, respectively. At the
arrow, four points are overlapped: ðdetector pair;modeÞ ¼
ð2; tensorÞ, (2, vector), (3, vector), and (3, scalar). The numbers
in the figure represent the real-detector pairs: 1 ¼ HL, 2 ¼ AC,
3 ¼ CH, 4 ¼ LV, 5 ¼ HV, 6 ¼ CV, 7 ¼ CL, 8 ¼ AV, 9 ¼
AH, and 10 ¼ AL.
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Comparing Eq. (19) with Eq. (21), we define a statistic,

ZIJðfÞ 	 20�2

3H2
0T

jfj3~s�I ðfÞ~sJðfÞ

¼ �T
gwðfÞ�T

IJðfÞ þ�V
gwðfÞ�V

IJðfÞ
þ 	�S

gwðfÞ�S
IJðfÞ þ a noise term:

This statistic contains the contribution from noise terms.
However, by taking the ensemble average, the noise terms
vanish, because we are assuming that the detector noises
are independent of each other. Then, we obtain three cross-
correlation signals

hZ12i
hZ23i
hZ31i

0
@

1
A ¼ �

�T
gw

�V
gw

	�S
gw

0
B@

1
CA; (44)

with a detector correlation matrix

� 	
�T
12 �V

12 �S
12

�T
23 �V

23 �S
23

�T
31 �V

31 �S
31

0
B@

1
CA (45)

where the subscripts, I, J ¼ 1, 2, and 3, discriminate the
detectors. Therefore, the modes can be separated by in-
verting Eq. (44), namely,

�T
gw

�V
gw

	�S
gw

0
B@

1
CA ¼ ��1

hZ12i
hZ23i
hZ31i

0
@

1
A:

The explicit expression of��1, which we call a separation
matrix, is

��1 ¼ 1

det�

�V
23�

S
31 � �S

23�
V
31 �V

31�
S
12 � �S

31�
V
12 �V

12�
S
23 � �S

12�
V
23

�S
23�

T
31 � �T

23�
S
31 �S

31�
T
12 � �T

31�
S
12 �S

12�
T
23 � �T

12�
S
23

�T
23�

V
31 � �V

23�
T
31 �T

31�
V
12 � �V

31�
T
12 �T

12�
V
23 � �V

12�
T
23

0
B@

1
CA; (46)

with

det� ¼ �T
12ð�V

23�
S
31 � �V

31�
S
23Þ þ �V

12ð�S
23�

T
31 � �S

31�
T
23Þ

þ �S
12ð�T

23�
V
31 � �T

31�
V
23Þ:

For the mode separation, the condition, det� � 0, is re-
quired and should be checked. As we will verify later, in
the case of the specific detectors on the Earth, we can
safely perform the integration of the SNR.

Next, we derive the SNR formula for separate detection
of each polarization mode with three detectors. The GW
signal and detector noise are given by replacing ~s�I ðfÞ~sJðfÞ
in Eqs. (26) and (43) with a certain combination


M1ðfÞ~s�1ðfÞ~s2ðfÞ þ 
M2ðfÞ~s�2ðfÞ~s3ðfÞ
þ 
M3ðfÞ~s�3ðfÞ~s1ðfÞ;

where 
MiðfÞ, i ¼ 1, 2, 3, M ¼ T, V, S are the proper
components of the inverse of the separation matrix, ��1,
e.g., to separate the tensor mode, 
T1 ¼ ð�V

23�
S
31 �

�S
23�

V
31Þ= det�, 
T2 ¼ ð�V

31�
S
12 � �S

31�
V
12Þ= det�, and


T3 ¼ ð�V
12�

S
23 � �S

12�
V
23Þ= det�. Then, the GW signal

for each mode, M ¼ T, V, and S, is

�M ¼ 3H2
0

20�2
T
Z 1

�1
dfjfj�3½
M1ðfÞhZ12ðfÞi

þ 
M2ðfÞhZ23ðfÞi þ 
M3ðfÞhZ31ðfÞi� ~QðfÞ; (47)

and the detector noise (the variance of �) is


2
M ¼ T

4

Z 1

�1
df½
2

M1ðfÞP1ðjfjÞP2ðjfjÞ
þ 
2

M2ðfÞP2ðjfjÞP3ðjfjÞ
þ 
2

M3ðfÞP3ðjfjÞP1ðjfjÞ�j ~QðfÞj2: (48)

Hereafter we omit the subscriptM for the simplicity of the
expressions. Note that, however, Hg, Hn, and SNR below

are different functions for each polarization mode.
Defining

HgðfÞ 	 
1ðfÞhZ12ðfÞi þ 
2ðfÞhZ23ðfÞi þ 
3ðfÞhZ31ðfÞi;
(49)

HnðfÞ 	 ½
2
1ðfÞP1ðjfjÞP2ðjfjÞ þ 
2

2ðfÞP2ðjfjÞP3ðjfjÞ
þ 
2

3ðfÞP3ðjfjÞP1ðjfjÞ�1=2; (50)

and an inner product

ðA; BÞ 	
Z 1

�1
dfA�ðfÞBðfÞH2

nðfÞ;

we can write Eqs. (47) and (48) into

� ¼ 3H2
0

20�2
T

�
~Q;

Hg

jfj3H2
n

�
; (51)


2 ¼ T

4
ð ~Q; ~QÞ: (52)

Thus, to optimize the SNR, the optimal filter should be
chosen as
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~QðfÞ ¼ K
HgðfÞ

jfj3H2
nðfÞ

:

Substituting the specific form of the optimal filter in Eqs.
(51) and (52), one obtains the SNR formula after the mode
separation as

SNR ¼ 3H2
0

10�2

ffiffiffiffi
T

p �Z 1

�1
df

H2
gðfÞ

jfj6H2
nðfÞ

�
1=2

: (53)

Using this formula, we calculate the SNRs. For simplic-
ity, we assume that all detectors have the same noise power
spectrum, PðfÞ ¼ P1ðfÞ ¼ P2ðfÞ ¼ P3ðfÞ. In this case,
H2

g=H
2
n in the integrand of Eq. (53) can be written down

explicitly. Substituting Eqs. (49) and (50) into H2
g=H

2
n and

using the components of Eq. (46) gives
(i) tensor mode

H2
gðfÞ

H2
nðfÞ

¼ ð�T
gwÞ2

P2ðfÞ WTðfÞ; WTðfÞ 	 ðdet�Þ2
ð�V

23�
S
31 � �S

23�
V
31Þ2 þ ð�V

31�
S
12 � �S

31�
V
12Þ2 þ ð�V

12�
S
23 � �S

12�
V
23Þ2

;

(ii) vector mode

H2
gðfÞ

H2
nðfÞ

¼ ð�V
gwÞ2

P2ðfÞ WVðfÞ; WVðfÞ 	 ðdet�Þ2
ð�S

23�
T
31 � �T

23�
S
31Þ2 þ ð�S

31�
T
12 � �T

31�
S
12Þ2 þ ð�S

12�
T
23 � �T

12�
S
23Þ2

;

(iii) scalar mode

H2
gðfÞ

H2
nðfÞ

¼ ð�S
gwÞ2

P2ðfÞ WSðfÞ; WSðfÞ 	 ðdet�Þ2
ð�T

23�
V
31 � �V

23�
T
31Þ2 þ ð�T

31�
V
12 � �V

31�
T
12Þ2 þ ð�T

12�
V
23 � �V

12�
T
23Þ2

:

In the above equations, we define the function WMðfÞ,
M ¼ T, V, and S. Comparing Eq. (53) with Eq. (30), we

can interpret
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
WMðfÞ

p
as an effective overlap reduction

function in the case of the polarization mode separation
with three detectors. As we noted earlier, the condition
det� � 0 is needed in order to successfully separate the
polarization modes. However, we can safely perform the
integral, because the contribution to the SNR automatically
drops out from the integral when det� ¼ 0. Another con-
cern about the integral is the pole ofWMðfÞ. For complete-
ness, we checked that WMðfÞ of all three-detector sets do
not diverge at any frequency in the observation frequency
band, as an example, which is shown in Fig. 13.

Assuming that GWB spectra are independent of fre-
quency and that observation time is T ¼ 3 yr, we obtain
the SNRs after the mode separation with three specific
detectors. The detectable GWB-energy density with ad-
vanced detectors with the detection threshold SNR ¼ 5 is
shown in Table V. In comparison with the SNRs in the
presence of a single polarization mode in Table IV, three
detector combinations have almost the same sensitivity to
three polarization modes even when the modes are
separated.
Although we considered the three-detector case above,

one can also perform the correlation analysis with more
than four detectors [33,42]. In the case of N detectors
available, there areNpair ¼ NðN � 1Þ=2 correlation signals
from detector pairs. Then, the number of independent
combinations for the three-mode separation is Npair � 2.

FIG. 13 (color online). Plot of a squared effective overlap
reduction function, WMðfÞ, for the H-L-V detector set. No
divergence of the function occurs in an observational frequency
band.

TABLE V. Detectable energy density of GWB with SNR ¼ 5,
assuming T ¼ 3 yr.

Detector set h20�
T
gw h20�

V
gw 	h20�

S
gw

A-C-H 5:2� 10�9 8:1� 10�9 5:5� 10�9

A-C-L 6:0� 10�9 1:5� 10�8 8:3� 10�9

A-C-V 1:3� 10�8 1:0� 10�8 6:8� 10�9

A-H-L 3:8� 10�9 1:2� 10�8 1:0� 10�8

A-H-V 8:5� 10�9 2:2� 10�8 2:1� 10�8

A-L-V 6:0� 10�9 2:4� 10�8 2:3� 10�8

C-H-L 1:4� 10�8 1:9� 10�8 1:9� 10�8

C-H-V 1:1� 10�8 1:0� 10�8 7:6� 10�9

C-L-V 1:2� 10�8 2:0� 10�8 1:7� 10�8

H-L-V 6:1� 10�9 1:3� 10�8 6:0� 10�9
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The additional combinations can be exploited in order to
optimally weight the correlation signals and to enhance the
SNR. Such an analysis with multiple-detector pairs has
been done in [33,42]. However, the SNR is not signifi-
cantly improved when noisy or largely separated detectors
are added, because the SNR is mainly determined by the
sensitive three detectors among the detector network.
Therefore, in the case of more than four detectors, the
SNRs are not much different from those provided in
Table V.

VI. DISCUSSIONS AND CONCLUSIONS

In this paper, we investigated the detectability of addi-
tional polarization modes of a stochastic GWB with
ground-based laser-interferometric detectors. Such polar-
ization modes, in general, appear in the extended theories
of gravitation and the theories with extra dimensions, and
can be utilized to constrain the theories beyond GR in a
model-independent way. We extended the formalism of the
cross-correlation analysis, including the additional polar-
ization modes, and calculated the detectable energy density
of the GWB. In the presence of a single polarization mode,
a detector pair has almost the same sensitivity to tensor,
vector, and scalar modes, and can detect the GWB of
h20�gw � 10�9 with SNR ¼ 5. We showed that the mixture

of the three polarization modes in the correlation signals
can be separated with more than three independent detec-
tors at different sites, and that the separation does not
significantly affect the SNR, which is comparable to the
SNR obtained in the presence of a single polarization
mode. It is interesting that the most sensitive detector set
for one polarization mode does not necessarily coincide
with that for other polarization modes: the best detector
sets are A-H-L for the tensor polarization and A-C-H for
the vector and scalar polarizations. (The noises of all the
detectors are assumed to be identical with that of advanced
LIGO.)

We showed that the existence of the nontensorial polar-
ization modes in a GWB can be probed with more than
three detectors. What we know from the observation is the
energy density of the GWB for each polarization, which is
present in the Universe. If the GWB is not detected, we
obtain the upper limit. To select the correct theories or
constrain the theories, we need to compare the GWB
spectrum obtained in the observation with that predicted
in a specific theory. So, the derivation of the GWB spec-
trum in a specific theory is the important issue that should
be addressed, but we will leave it for future work.
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APPENDIX: TENSORIAL EXPANSION OF
OVERLAP REDUCTION FUNCTION

In this Appendix, we provide a tensorial expansion of
the overlap reduction function, which allows us to perform
the angular integral about a GW-propagating direction,
without specifying a detector configuration.
Defining

� ~X ¼ ~X1 � ~X2 	 j� ~Xjd̂; �ðfÞ 	 2�fj� ~Xj
c

;

and

�T
ijk‘ð�; d̂Þ 	

5

2

X
A

Z
S2

d�̂

4�
ei��̂�d̂~eAijð�̂Þ~eAk‘ð�̂Þ; (A1)

�V
ijk‘ð�; d̂Þ 	

5

2

X
A

Z
S2

d�̂

4�
ei��̂�d̂~eAijð�̂Þ~eAk‘ð�̂Þ; (A2)

�S
ijk‘ð�; d̂Þ 	

15

1þ 2�

X
A

Z
S2

d�̂

4�
ei��̂�d̂~eAijð�̂Þ~eAk‘ð�̂Þ;

(A3)

the overlap reduction functions, Eqs. (22)–(24), can be
written as

�MðfÞ ¼ DijDk‘�M
ijk‘ð�; d̂Þ; (A4)

where the superscript M distinguishes polarization modes,
M ¼ T (tensor), V (vector), and S (scalar). However, since
the following calculations are parallel for all polarization
modes, we omit M ¼ T, V, and S. In Eqs. (A1)–(A3), the
summation about the polarizations is A ¼ þ, � for the
tensor mode, A ¼ x, y for the vector mode, and A ¼ b, ‘
for the scalar mode, respectively.
The tensor �ijk‘ has the symmetric properties,

�ijk‘ ¼ �jik‘; �ijk‘ ¼ �ij‘k; �ijk‘ ¼ �k‘ij:

Consequently, thanks to the symmetries, �ijk‘ can be ex-

panded in tensorial bases as

�ijk‘ð�;d̂Þ¼C1ð�Þ�ij�k‘þC2ð�Þð�ik�j‘þ�jk�i‘Þ
þC3ð�Þð�ijd̂kd̂‘þ�k‘d̂id̂jÞþC4ð�Þð�ikd̂jd̂‘

þ�i‘d̂jd̂kþ�jkd̂id̂‘þ�j‘d̂id̂kÞ
þC5ð�Þd̂id̂jd̂kd̂‘: (A5)

Here we define the contracted quantities of �ijk‘ with the

tensorial bases,
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q1 	 �ijk‘�
ij�k‘;

q2 	 �ijk‘ð�ik�j‘ þ �jk�i‘Þ;
q3 	 �ijk‘ð�ijd̂kd̂‘ þ �k‘d̂id̂jÞ;
q4 	 �ijk‘ð�ikd̂jd̂‘ þ �i‘d̂jd̂k þ �jkd̂id̂‘ þ �j‘d̂id̂kÞ;
q5 	 �ijk‘d̂

id̂jd̂kd̂‘: (A6)

Then, from Eqs. (A5) and (A6), q1; . . . ; q5 can be related to
the coefficients C1; . . . ; C5 by

q1
q2
q3
q4
q5

0
BBBBB@

1
CCCCCA ¼

9 6 6 4 1
6 24 4 16 2
6 4 8 8 2
4 16 8 24 4
1 2 2 4 1

0
BBBBB@

1
CCCCCA

C1

C2

C3

C4

C5

0
BBBBB@

1
CCCCCA;

or, inversely,

C1

C2

C3

C4

C5

0
BBBBB@

1
CCCCCA ¼ 1

8

3 �1 �3 1 1
�1 1 1 �1 1
�3 1 5 �1 �5
1 �1 �1 2 �5
1 1 �5 �5 35

0
BBBBB@

1
CCCCCA

q1
q2
q3
q4
q5

0
BBBBB@

1
CCCCCA: (A7)

On the other hand, from Eq. (A1), q1; . . . ; q5 can be
explicitly integrated with respect to the propagation direc-
tion of GWs over the celestial sphere, by temporarily
introducing a coordinate such that

�̂ � d̂ ¼ cos� 	 x; m̂ � d̂ ¼ 0; n̂ � d̂ ¼ � sin�;

and by using the integral formulas of spherical Bessel
functions jnðxÞ,Z 1

�1
dxei�x ¼ 2j0ð�Þ;

Z 1

�1
dxei�xð1� x2Þ ¼ 4

j1ð�Þ
�

;

Z 1

�1
dxei�xð1� x2Þ2 ¼ 16

j2ð�Þ
�2

;

Z 1

�1
dxei�xx2 ¼ 2

3
½j0ð�Þ � 2j2ð�Þ�;

Z 1

�1
dxei�xx4 ¼ 2

35
½7j0ð�Þ � 20j2ð�Þ þ 8j4ð�Þ�;

and the relations between the spherical Bessel functions
with different indices,

j1ð�Þ
�

¼ 1

3
½j0ð�Þ þ j2ð�Þ�;

j2ð�Þ
�2

¼ 1

105
½7j0ð�Þ þ 10j2ð�Þ þ 3j4ð�Þ�:

Then, C1; . . . ; C5 in Eq. (A7) can be expressed in terms of
the spherical Bessel functions. The results are

(i) for tensor mode

q1 ¼ 0; q2 ¼ 20j0ð�Þ; q3 ¼ 0;

q4 ¼ 40
j1ð�Þ
�

; q5 ¼ 20
j2ð�Þ
�2

;

C1

C2

C3

C4

C5

0
BBBBB@

1
CCCCCA ¼ 1

42

�28 80 3
42 �60 3
0 �120 �15
0 90 �15
0 0 105

0
BBBBB@

1
CCCCCA

j0
j2
j4

0
@

1
A;

(ii) for vector mode

q1 ¼ 0; q2 ¼ 20j0ð�Þ; q3 ¼ 0;

q4 ¼ 20

3
½2j0ð�Þ � j2ð�Þ�;

q5 ¼ 20

�
1

15
j0ð�Þ � 1

21
j2ð�Þ � 4

35
j4ð�Þ

�
;

C1

C2

C3

C4

C5

0
BBBBB@

1
CCCCCA ¼ 1

42

�28 �40 �12
42 30 �12
0 60 60
0 �45 60
0 0 �420

0
BBBBB@

1
CCCCCA

j0
j2
j4

0
@

1
A;

(iii) for scalar mode

q1 ¼ 30

�
2þ �

1þ 2�

�
j0ð�Þ;

q2 ¼ 60

�
1þ �

1þ 2�

�
j0ð�Þ;

q3 ¼ 20

1þ 2�
½ð2þ �Þj0ð�Þ þ 2ð1� �Þj2ð�Þ�;

q4 ¼ 40

1þ 2�
½ð1þ �Þj0ð�Þ þ ð1� 2�Þj2ð�Þ�;

q5 ¼ 2

7
½7ð4þ 3�Þj0ð�Þ þ 20ð2� 3�Þj2ð�Þ þ 12ð1

þ �Þj4ð�Þ�;
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C1

C2

C3

C4

C5

0
BBBBBBBB@

1
CCCCCCCCA
¼ 1

7ð1þ2�Þ

�

14ð3þ�Þ �20ð3��Þ 3ð1þ2�Þ
7ð1þ2�Þ 10ð1þ2�Þ 3ð1þ2�Þ

0 30ð3��Þ �15ð1þ2�Þ
0 �15ð1þ2�Þ �15ð1þ2�Þ
0 0 105ð1þ2�Þ

0
BBBBBBBB@

1
CCCCCCCCA

�
j0

j2

j4

0
BB@

1
CCA:

From Eqs. (A4) and (A5) together with the traceless
property of Dij, the overlap reduction function can be

written as

�ðfÞ ¼ �1ð�ÞDijDij þ �2ð�ÞDi
kD

kjd̂id̂j

þ �3ð�ÞDijDk‘d̂id̂jd̂kd̂‘;

with the redefinitions of the coefficients, �1ð�Þ ¼ 2C2ð�Þ,

�2ð�Þ ¼ 4C4ð�Þ, and �3ð�Þ ¼ C5ð�Þ. The new coeffi-
cients are given by
(i) for tensor mode

�T
1

�T
2

�T
3

0
B@

1
CA ¼ 1

14

28 �40 2
0 120 �20
0 0 35

0
@

1
A j0

j2
j4

0
@

1
A;

(ii) for vector mode

�V
1

�V
2

�V
3

0
B@

1
CA ¼ 2

7

7 5 �2
0 �15 20
0 0 �35

0
@

1
A j0

j2
j4

0
@

1
A;

(iii) for scalar mode

�S
1

�S
2

�S
3

0
B@

1
CA ¼ 1

7

14 20 6
0 �60 �60
0 0 105

0
@

1
A j0

j2
j4

0
@

1
A:

Note that the parameter � vanishes in the overlap reduction
function, because Fb and F‘ have the same response and �
is normalized.
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