223 research outputs found

    Soliton Instabilities and Vortex Streets Formation in a Polariton Quantum Fluid

    Get PDF
    Exciton-polaritons have been shown to be an optimal system in order to investigate the properties of bosonic quantum fluids. We report here on the observation of dark solitons in the wake of engineered circular obstacles and their decay into streets of quantized vortices. Our experiments provide a time-resolved access to the polariton phase and density, which allows for a quantitative study of instabilities of freely evolving polaritons. The decay of solitons is quantified and identified as an effect of disorder-induced transverse perturbations in the dissipative polariton gas

    Suicides in Psychiatric Patients: Identifying Health Care-Related Factors through Clinical Practice Reviews.

    Get PDF
    The objective of this study was to identify health care-related factors associated with death by suicide in psychiatric patients and to gain insight into clinician views on how to deal with suicidality. The study material derived from a clinician committee in a psychiatric department reviewing every outpatient and inpatient suicide in a standardized way. Reports' conclusions and corresponding plenary discussion minutes regarding 94 suicides were analyzed using inductive thematic content analysis. Health care-related factors were categorized into 4 themes: patient evaluation, patient management, clinician training, and involvement of relevant non-clinical partners. Clinician views on the themes were expressed through statements (i) promoting or restricting an aspect of care (here called recommendations), which mainly followed existing guidelines and were consensual and (ii) without precise indication (here called comments), which departed from mainstream opinions or addressed topics not covered by existing policy. Involvement of non-clinical partners emerged as a new key issue for suicide prevention in psychiatric departments and should be openly discussed with patients. Clinicians preferred balanced conclusions when they reviewed suicide cases

    Laser-driven plasma waves in capillary tubes

    Full text link
    The excitation of plasma waves over a length of up to 8 centimeters is, for the first time, demon- strated using laser guiding of intense laser pulses through hydrogen filled glass capillary tubes. The plasma waves are diagnosed by spectral analysis of the transmitted laser radiation. The dependence of the spectral redshift, measured as a function of filling pressure, capillary tube length and incident laser energy, is in excellent agreement with simulation results. The longitudinal accelerating field inferred from the simulations is in the range 1 -10 GV/m

    Spin-to-Orbital Angular Momentum Conversion in Semiconductor Microcavities

    Get PDF
    We experimentally demonstrate a technique for the generation of optical beams carrying orbital angular momentum using a planar semiconductor microcavity. Despite being isotropic systems, the transverse electric - transverse magnetic (TE-TM) polarization splitting featured by semiconductor microcavities allows for the conversion of the circular polarization of an incoming laser beam into the orbital angular momentum of the transmitted light field. The process implies the formation of topological entities, a pair of optical half-vortices, in the intracavity field

    Reversible magnetization below Tc in high-quality superconducting ceramics

    Get PDF
    International audienceWe have investigated the reversible magnetization below Tc in high-quality YBa2Cu307_d (Y-123), YBa2Cu4Os (Y-124), Y2Ba4Cu7O15+x (Y-247) and Bi2Sr2CaCu2O8+x (Bi-2212), Tl2Ba2Cu106+d (Tl-2201) and Tl2Ba2CalCu2O8+d (T1-2212) ceramics. Except for the stoichiometric Y-124 phase, the oxygen concentration was optimized in order to obtain the highest value of the critical temperature for which the normal-state susceptibility becomes temperature independent. Using the simple London model, we are able to fit the reversible magnetization M(T, H) outside the region near Tc with good accuracy for the nearly three-dimensional YBaCuO phases. For the very anisotropic BiSrCaCuO and TlBaCaCuO phases, we have to include an additional term to take into account the fluctuations of vortices. An important result is that Y-123 exhibits a critical field clearly higher than those of the BiSrCaCuO or TlBaCaCuO phases. We obtain for the Y-123 phase a slope at Tc μodHC2,C/dT = -4.3 T/K and an extrapolated μoHC2,C (0) = 280 T

    Multistability of a coherent spin ensemble in a semiconductor microcavity

    Get PDF
    Coherent manipulation of spin ensembles is a key issue in the development of spintronics. In particular, multivalued spin switching may lead to new schemes of logic gating and memories. This phenomenon has been studied with atom vapours 30 years ago, but is still awaited in the solid state. Here, we demonstrate spin multistability with microcavity polaritons in a trap. Owing to the spinor nature of these light-matter quasiparticles and to the anisotropy of their interactions, we can optically control the spin state of a single confined level by tuning the excitation power, frequency and polarization. First, we realize high-efficiency power-dependent polarization switching. Then, at constant excitation power, we evidence polarization hysteresis and determine the conditions for realizing multivalued spin switching. Finally, we demonstrate an unexpected regime, where our system behaves as a high-contrast spin trigger. These results open new pathways to the development of advanced spintronics devices and to the realization of multivalued logic circuits

    Experimental evidence for fast cluster formation of chain oxygen vacancies in YBa2Cu3O7-d being at the origin of the fishtail anomaly

    Full text link
    We report on three different and complementary measurements, namely magnetisation measurements, positron annihilation spectroscopy and NMR measurements, which give evidence that the formation of oxygen vacancy clusters is on the origin of the fishtail anomaly in YBa2Cu3O7-d. While in the case of YBa2Cu3O7.0 the anomaly is intrinsically absent, it can be suppressed in the optimally doped state where vacancies are present. We therefore conclude that the single vacancies or point defects can not be responsible for this anomaly but that clusters of oxygen vacancies are on its origin.Comment: 10 pages, 4 figures, submitted to PR

    Optical manipulation of the wave function of quasiparticles in a solid

    Get PDF
    Polaritons in semiconductor microcavities are hybrid quasiparticles consisting of a superposition of photons and excitons. Due to the photon component, polaritons are characterized by a quantum coherence length in the several micron range. Owing to their exciton content, they display sizeable interactions, both mutual and with other electronic degrees of freedom. These unique features have produced striking matter wave phenomena, such as Bose-Einstein condensation, or parametric processes able to generate quantum entangled polariton states. Recently, several paradigms for spatial confinement of polaritons in semiconductor devices have been established. This opens the way to quantum devices in which polaritons can be used as a vector of quantum information. An essential element of each quantum device is the quantum state control. Here we demonstrate control of the wave function of confined polaritons, by means of tailored resonant optical excitation. By tuning the energy and momentum of the laser, we achieve precise control of the momentum pattern of the polariton wave function. A theoretical model supports unambiguously our observations

    Scaling of the Equilibrium Magnetization in the Mixed State of Type-II Superconductors

    Full text link
    We discuss the analysis of mixed-state magnetization data of type-II superconductors using a recently developed scaling procedure. It is based on the fact that, if the Ginzburg-Landau parameter kappa does not depend on temperature, the magnetic susceptibility is a universal function of H/H_c2(T), leading to a simple relation between magnetizations at different temperatures. Although this scaling procedure does not provide absolute values of the upper critical fieldH_c2(T), its temperature variation can be established rather accurately. This provides an opportunity to validate theoretical models that are usually employed for the evaluation of H_c2(T) from equilibrium magnetization data. In the second part of the paper we apply this scaling procedure for a discussion of the notorious first order phase transition in the mixed state of high temperature superconductors. Our analysis, based on experimental magnetization data available in the literature, shows that the shift of the magnetization accross the transition may adopt either sign, depending on the particular chosen sample. We argue that this observation is inconsistent with the interpretation that this transition always represents the melting transition of the vortex lattice.Comment: 18 pages, 12 figure

    Magnetic Field Induced Redistribution of Exciton-Polariton Density on Confined Modes

    Get PDF
    The influence of magnetic field on confined exciton-polariton modes inside a semiconductor microcavity is discussed. The three-dimensional confinement for exciton-polaritons is achieved by the mesa structures confining the photonic part of polaritons. We observe a strong increase of the polariton emission intensity and we argue that this effect is due to the change of the oscillator strength of the excitonic component of polaritons and the change of the excitonic content in polariton state as the magnetic field increases
    corecore