2,599 research outputs found

    Hydrodynamic dispersion within porous biofilms

    Get PDF
    Many microorganisms live within surface-associated consortia, termed biofilms, that can form intricate porous structures interspersed with a network of fluid channels. In such systems, transport phenomena, including flow and advection, regulate various aspects of cell behavior by controlling nutrient supply, evacuation of waste products, and permeation of antimicrobial agents. This study presents multiscale analysis of solute transport in these porous biofilms. We start our analysis with a channel-scale description of mass transport and use the method of volume averaging to derive a set of homogenized equations at the biofilm-scale in the case where the width of the channels is significantly smaller than the thickness of the biofilm. We show that solute transport may be described via two coupled partial differential equations or telegrapher's equations for the averaged concentrations. These models are particularly relevant for chemicals, such as some antimicrobial agents, that penetrate cell clusters very slowly. In most cases, especially for nutrients, solute penetration is faster, and transport can be described via an advection-dispersion equation. In this simpler case, the effective diffusion is characterized by a second-order tensor whose components depend on (1) the topology of the channels' network; (2) the solute's diffusion coefficients in the fluid and the cell clusters; (3) hydrodynamic dispersion effects; and (4) an additional dispersion term intrinsic to the two-phase configuration. Although solute transport in biofilms is commonly thought to be diffusion dominated, this analysis shows that hydrodynamic dispersion effects may significantly contribute to transport

    Crushing damage estimation for pavement with lightly cementitious bases

    Get PDF
    This paper was transferred from the original CD ROM created for this conference. The material was published using Adobe Acrobat 10.1.0 Technology. The original CD ROM was produced by CE Projects cc. Postal Address: PO Box 560 Irene 0062 South Africa. Tel.: +27 12 667 2074 Fax: +27 12 667 2766 E-mail: [email protected] presented at the 33rd Annual Southern African Transport Conference 7-10 July 2014 "Leading Transport into the Future", CSIR International Convention Centre, Pretoria, South Africa.Crushing (or compression) failure and associated surface deformation of lightly cementitious (stabilised) materials used for base/sub-base course layers in pavements has been well established in the South African pavement design practice since the 1990s. Typically, crushing failure starts at the surface of the cementitious base layer, and could extend to 50 mm deep, depending on tyre load/stress conditions. Recently developed crushing damage relationships for 2, 5, 10, 15 and 20 mm level of deformation (“rut”) were proposed for practical application on these pavements. The aim of this paper is the practical application of these relationships for an un-surfaced and surfaced pavement with a typical stabilised (C3 – quality) base layer. Currently there are up to 15 standard pavement designs with cementitious base layers proposed in TRH 4 (1996). This paper demonstrates the impact of four different tyre models (including overloading) used in the mechanistic-empirical design of these pavements. In particular, the importance of adequate surface protection is demonstrated with reference to the vertical tyre contact stresses expected on these cementitious layers. The impact of the findings extends to the use (or not) of C3 - quality bases and associated surfacings on all categories of pavements carrying up to 10 million E80s. This is considered important towards the upgrading of secondary (or alternative) road pavements using cementitious stabilisers in the base layer, especially in the light of the potential future attraction of heavily loaded vehicles - with or without overloading on the tyres

    Measurement of neutron capture on 48^{48}Ca at thermal and thermonuclear energies

    Full text link
    At the Karlsruhe pulsed 3.75\,MV Van de Graaff accelerator the thermonuclear 48^{48}Ca(n,Îł\gamma)49^{49}Ca(8.72\,min) cross section was measured by the fast cyclic activation technique via the 3084.5\,keV Îł\gamma-ray line of the 49^{49}Ca-decay. Samples of CaCO3_3 enriched in 48^{48}Ca by 77.87\,\% were irradiated between two gold foils which served as capture standards. The capture cross-section was measured at the neutron energies 25, 151, 176, and 218\,keV, respectively. Additionally, the thermal capture cross-section was measured at the reactor BR1 in Mol, Belgium, via the prompt and decay Îł\gamma-ray lines using the same target material. The 48^{48}Ca(n,Îł\gamma)49^{49}Ca cross-section in the thermonuclear and thermal energy range has been calculated using the direct-capture model combined with folding potentials. The potential strengths are adjusted to the scattering length and the binding energies of the final states in 49^{49}Ca. The small coherent elastic cross section of 48^{48}Ca+n is explained through the nuclear Ramsauer effect. Spectroscopic factors of 49^{49}Ca have been extracted from the thermal capture cross-section with better accuracy than from a recent (d,p) experiment. Within the uncertainties both results are in agreement. The non-resonant thermal and thermonuclear experimental data for this reaction can be reproduced using the direct-capture model. A possible interference with a resonant contribution is discussed. The neutron spectroscopic factors of 49^{49}Ca determined from shell-model calculations are compared with the values extracted from the experimental cross sections for 48^{48}Ca(d,p)49^{49}Ca and 48^{48}Ca(n,Îł\gamma)49^{49}Ca.Comment: 15 pages (uses Revtex), 7 postscript figures (uses psfig), accepted for publication in PRC, uuencoded tex-files and postscript-files also available at ftp://is1.kph.tuwien.ac.at/pub/ohu/Ca.u

    Modelling tyre-road contact stresses in pavement design and analysis

    Get PDF
    Paper presented at the 32nd Annual Southern African Transport Conference 8-11 July 2013 "Transport and Sustainable Infrastructure", CSIR International Convention Centre, Pretoria, South Africa.Growing traffic volumes, increasing construction and maintenance costs continually drive for more innovative approaches and methodologies towards sustainable road infrastructure. At the current price levels of around R6000 per metric tonne, bitumen, as a “raw” product, is by far the most costly element in flexible pavements, for example compared to Crushed stone, which is at approximately R170 per metric tonne. Since the asphalt layer or relatively thin bituminous seal acts as the stress barrier between rolling tyres and the road structure it needs to be durable so as to withstand current traffic loading and hence contact stresses, given the environmental forces also acting on it. For road infrastructure to perform as expected, it is important to optimize road pavement design, especially close to the surface of the pavement requiring accurate modelling of tyre-road contact stresses. The aim of this paper is to demonstrate modern ways to idealise tyre-road interaction based on Stress-In-Motion (SIM) results, in particular the way in which numerical analyses are used (and developed) to address non-uniformly distributed tyre contact stresses on the surface of the pavements. A tyre model is demonstrated whereby the SIM measured contact stress distribution is idealised with a multitude of circular and rectangular shapes, mimicking the non-uniform characteristics of the contact stresses inside the tyre contact patch. An example, in terms of pavement layer life and strain energy of distortion, is given highlighting the effects of different tyre-road models on a typical flexible road structure, compared to the traditional circular shape model of a single uniformly distributed contact stress (1D).This paper was transferred from the original CD ROM created for this conference. The material was published using Adobe Acrobat 10.1.0 Technology. The original CD ROM was produced by Document Transformation Technologies Postal Address: PO Box 560 Irene 0062 South Africa. Tel.: +27 12 667 2074 Fax: +27 12 667 2766 E-mail: nigel@doctech URL: http://www.doctech.co.zamv201

    Quantitative analysis of powder mixtures by raman spectrometry : the influence of particle size and its correction

    Get PDF
    Particle size distribution and compactness have significant confounding effects on Raman signals of powder mixtures, which cannot be effectively modeled or corrected by traditional multivariate linear calibration methods such as partial least-squares (PLS), and therefore greatly deteriorate the predictive abilities of Raman calibration models for powder mixtures. The ability to obtain directly quantitative information from Raman signals of powder mixtures with varying particle size distribution and compactness is, therefore, of considerable interest In this study, an advanced quantitative Raman calibration model was developed to explicitly account for the confounding effects of particle size distribution and compactness on Raman signals of powder mixtures. Under the theoretical guidance of the proposed Raman calibration model, an advanced dual calibration strategy was adopted to separate the Raman contributions caused by the changes in mass fractions of the constituents in powder mixtures from those induced by the variations in the physical properties of samples, and hence achieve accurate quantitative determination for powder mixture samples. The proposed Raman calibration model was applied to the quantitative analysis of backscatter Raman measurements of a proof-of-concept model system of powder mixtures consisting of barium nitrate and potassium chromate. The average relative prediction error of prediction obtained by the proposed Raman calibration model was less than one-third of the corresponding value of the best performing PLS model for mass fractions of barium nitrate in powder mixtures with variations in particle size distribution, as well as compactness

    Dependence of direct neutron capture on nuclear-structure models

    Get PDF
    The prediction of cross sections for nuclei far off stability is crucial in the field of nuclear astrophysics. We calculate direct neutron capture on the even-even isotopes 124−145^{124-145}Sn and 208−238^{208-238}Pb with energy levels, masses, and nuclear density distributions taken from different nuclear-structure models. The utilized structure models are a Hartree-Fock-Bogoliubov model, a relativistic mean field theory, and a macroscopic-microscopic model based on the finite-range droplet model and a folded-Yukawa single-particle potential. Due to the differences in the resulting neutron separation and level energies, the investigated models yield capture cross sections sometimes differing by orders of magnitude. This may also lead to differences in the predicted astrophysical r-process paths. Astrophysical implications are discussed.Comment: 25 pages including 12 figures, RevTeX, to appear in Phys. Rev.

    Validating module network learning algorithms using simulated data

    Get PDF
    In recent years, several authors have used probabilistic graphical models to learn expression modules and their regulatory programs from gene expression data. Here, we demonstrate the use of the synthetic data generator SynTReN for the purpose of testing and comparing module network learning algorithms. We introduce a software package for learning module networks, called LeMoNe, which incorporates a novel strategy for learning regulatory programs. Novelties include the use of a bottom-up Bayesian hierarchical clustering to construct the regulatory programs, and the use of a conditional entropy measure to assign regulators to the regulation program nodes. Using SynTReN data, we test the performance of LeMoNe in a completely controlled situation and assess the effect of the methodological changes we made with respect to an existing software package, namely Genomica. Additionally, we assess the effect of various parameters, such as the size of the data set and the amount of noise, on the inference performance. Overall, application of Genomica and LeMoNe to simulated data sets gave comparable results. However, LeMoNe offers some advantages, one of them being that the learning process is considerably faster for larger data sets. Additionally, we show that the location of the regulators in the LeMoNe regulation programs and their conditional entropy may be used to prioritize regulators for functional validation, and that the combination of the bottom-up clustering strategy with the conditional entropy-based assignment of regulators improves the handling of missing or hidden regulators.Comment: 13 pages, 6 figures + 2 pages, 2 figures supplementary informatio

    Taenia solium Cysticercosis, Irian Jaya, Indonesia

    Get PDF
    Centers for Disease Control and Prevention, Toni, Wandra ; Akira, Ito ; Hiroshi, Yamasaki ; Thomas, Suroso ; Sri S. Margono, Emerging Infectious Diseases, 9(7), 2003, 884-885. publishe
    • 

    corecore