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 2 

Abstract: Particle size distribution and compactness have significant confounding effects on 22 

Raman signals of powder mixtures, which cannot be effectively modeled or corrected by 23 

traditional multivariate linear calibration methods such as partial least squares (PLS), and 24 

therefore greatly deteriorate the predictive abilities of Raman calibration models for powder 25 

mixtures. The ability to obtain directly quantitative information from Raman signals of 26 

powder mixtures with varying particle size distribution and compactness is, therefore, of 27 

considerable interest. In this study, an advanced quantitative Raman calibration model was 28 

developed to explicitly account for the confounding effects of particle size distribution and 29 

compactness on Raman signals of powder mixtures. Under the theoretical guidance of the 30 

proposed Raman calibration model, an advanced dual calibration strategy was adopted to 31 

separate the Raman contributions caused by the changes in mass fractions of the constituents 32 

in powder mixtures from those induced by the variations in the physical properties of samples, 33 

and hence achieve accurate quantitative determination for powder mixture samples. The 34 

proposed Raman calibration model was applied to the quantitative analysis of backscatter 35 

Raman measurements of a proof-of-concept model system of powder mixtures consisting of 36 

barium nitrate and potassium chromate. The average relative prediction error of prediction 37 

obtained by the proposed Raman calibration model was less than one-third of the 38 

corresponding value of the best performing PLS model for mass fractions of barium nitrate in 39 

powder mixtures with variations in particle size distribution as well as compactness. 40 

Keywords: Quantitative Raman Spectroscopic Analysis, Particle Size Distribution, 41 

Compactness, Multiplicative Confounding Effects, Powder Mixture, Dual Calibration 42 

Strategy 43 
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Introduction 44 

Powder blending is an important process in the manufacture of many pharmaceutical 45 

products
 1

. Raman spectroscopy has been increasingly applied to the qualitative analysis of 46 

powder mixtures 
2-6

, because of its flexibility of sampling (solids can be analyzed with little 47 

or no sample preparation), and exceptionally high chemical specificity and the use of fibre 48 

optics for convenient and remote analysis, which facilitate the non-invasive in-line and real 49 

time analysis of particulate systems 
7-17

. However, some issues remain unresolved regarding 50 

the quantitative in-line monitoring of particulate systems by Raman spectroscopy.  51 

One of the issues is that the Raman intensities of analyte peaks depend on not only the 52 

analyte concentration, but also on the intensity of the excitation source, the instrument’s 53 

optical configuration and the sample alignment. Therefore, to gain quantitative information 54 

requires the use of internal or external standards
 18-20

. Band ratios between the overall Raman 55 

intensities and that of an individual spectral peak arising from internal or external standards 56 

are calculated and used in quantitative analysis. But the use of internal or external standards 57 

can be difficult to apply accurately in many in-situ process analysis applications. Moreover, 58 

for samples involving solids such as powder mixtures, quantitative Raman analysis becomes 59 

even more difficult, because the Raman measurements from such samples depend on the 60 

particle size and compactness of the mixtures, which hinders the use of an internal or external 61 

standard. The application of multivariate calibration methods such as principal component 62 

regression (PCR) and partial least squares (PLS) has some advantages over univariate band 63 

ratio calibration models in the quantitative analysis of Raman measurements
 20, 21

. However, 64 

when analyzing powder mixtures using Raman spectroscopy, the variations in the physical 65 
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properties such as particle size and compactness of the mixtures have confounding effects on 66 

the total Raman intensities. Such confounding effects cannot be effectively modeled by 67 

standard multivariate calibration methods, and will significantly affect the predictive 68 

accuracy of multivariate calibration models.  69 

Although it has long been known that physical properties of powder samples can 70 

influence the intensity of the Raman spectrum, and several studies
 22-26

 have been conducted 71 

on the relationship between particle size and Raman intensity, relatively little research 72 

focuses on quantitative Raman spectroscopic analysis of powder mixtures. Some of the 73 

present authors conducted a preliminary investigation on quantitative Raman spectroscopic 74 

analysis of suspension samples 
27

. However, due to the facility limitations at that time, we 75 

were unable to explicitly investigate the effects of particle size distribution and sample 76 

compactness on Raman signals of powder mixtures in that work. The objectives of this study 77 

are to 1) explicitly investigate the effects of particle size and compactness on Raman signals 78 

of powder mixtures, 2) develop an advanced quantitative Raman calibration model for 79 

powder mixtures, and 3) eventually achieve accurate quantitative analysis of powder mixtures 80 

using Raman spectrometry. 81 

 82 

 83 

Theory 84 

Raman intensities of powder mixtures 85 

The intensity of Raman bands depends on a complex expression involving the polarisability 86 

tensor of a molecule
 28

. For analytical purposes, the following less rigorous linear model 87 
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analogous to the Beer-Lambert law can be used.
 

 88 

oIvrnvI  )()(  (1) 

Where I(ν) is the Raman intensity at Raman shift ν, Io is the intensity of the excitation 89 

radiation, n is the number of molecules of the analyte illuminated by the source and viewed 90 

by the spectrometer, and r(ν) is a composite term that represents the overall spectrometer 91 

response, and the self absorption and molecular scattering properties of the analyte at Raman 92 

shift ν. For K powder samples comprising J constituents with amounts above their Raman 93 

limits of detection, their overall Raman intensities can be expressed as the linear combination 94 

of the contributions of all J constituents as well as other possible interference(s) such as 95 

fluorescence.

 

 96 
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Where jkn ,

 

and erfkn int,

 

are the number of molecules of the j-th constituent and the 97 

interference(s) in the k-th powder sample illuminated by the source and viewed by the 98 

spectrometer, respectively; )(int νr erf  represents the molecular scattering/fluorescence 99 

properties of the interference(s) at Raman shift ν.  100 

Suppose mk and Vk are the overall mass and volume of the k-th powder sample, 101 

respectively. kspecV ,  denotes the volume of the k-th powder sample illuminated by the source 102 

and viewed by the spectrometer. wk,j (



J

j

jkw
1

1, ) signifies the mass fraction of the j-th 103 

constituent in the k-th sample. Mj is the molecular weight of the j-th constituent. The 104 

multiplicative parameter, pk, is introduced to account for the effects of the particle size 105 



 6 

distribution and compactness of the k-th sample on the Raman intensities
 24, 27

. Equation 2 106 

then becomes:  107 
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Define kkokspeckkk VIVmpq ,,   and jjj Mvrvr )()(*  . Equation 3 can be simplified as 108 

follows.  109 
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In equation 4, qk is a very important model parameter. It accounts for the variations in Raman 110 

intensities caused by the changes in variables other than the mass fractions of the constituents 111 

in the powder mixtures, such as the intensity of the excitation source, the sample’s particle 112 

size distribution, sample compactness, the overall mass and volume of the powder sample as 113 

well as the volume illuminated by the source and viewed by the spectrometer.  114 

Suppose the j-th constituent is the target component in the powder mixtures, and the 115 

Raman signals of K calibration samples have been measured over Raman shift range of v1~vm. 116 

As 



J

j

jkw
1

1, , equation 4 can be rewritten as:
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Assuming
*

jr , *

2r , and erfintr are linearly independent of each other, it can be seen that a 118 

straightforward multivariate linear calibration model can be built only between xk and 119 

jkk wq ,  (or qk). It is obvious that the multiplicative parameter, qk, may be different for each 120 



 7 

of the powder samples. Hence the relationship between Raman spectrum xk and the mass 121 

fraction of the j-th constituent (wk,j) is actually nonlinear; and the multiplicative parameter, qk, 122 

has confounding effects on the estimation of wk,j. In order to extract the quantitative 123 

information (mass fraction) of any constituent in powder samples from their Raman 124 

measurements, it is therefore imperative to estimate the multiplicative parameter, qk, for each 125 

powder sample.  126 

 127 

Dual Calibration Strategy (DCS) 
27, 29-30

 128 

For K training samples in which the mass fractions of the target constituent (say, the j-th 129 

constituent) are known, the multiplicative parameters, qk (k = 1, 2, …, K), can be estimated by 130 

the modified Optical Path-Length Estimation and Correction method (OPLECm) 
30

 ( the 131 

Matlab script for OPLECm is provided in supporting information). After the estimation of qk 132 

(k = 1, 2, …, K), the following two calibration models can be built by multivariate linear 133 

calibration methods such as PLS.
 

 134 

11)( βX1qw calj adiag  ;  22 βX1q cala   
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Where diag(wj) denotes the diagonal matrix in which the corresponding diagonal elements are 135 

the elements of wj; 1 is a column vector with its elements equal to unity. After the estimation 136 

of model parameters 1a , 2a , 1β , and 2β  by multivariate calibration methods such as PLS, 137 

these two calibration models could then be used to predict the mass fraction of the target 138 

constituent in any test powder sample (wtest,j) from its Raman spectrum xtest. 139 
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The mass fraction of other constituents in the test sample can be obtained in a similar way.   140 

 141 

 142 

Experimental  143 

Materials 144 

All chemicals were analytical grade, and were used as received without any further 145 

purification. Potassium chromate was obtained from Tianjin Windship Chemistry 146 

Technological Co., Ltd (Tianjin, China). Barium nitrate was purchased from Tianjin Kermel 147 

Chemical Reagent Co., Ltd (Tianjin, China).  148 

 149 

Equipment 150 

Raman spectra were acquired at room temperature on a LABRAM-0101 Laser Confocal 151 

Raman Spectrometer equipped with a 1024×256 pixels CCD detector. The microscope 152 

attachment was based on an Olympus BX41 system with a 10× objective. Radiation of 153 

632.81 nm from a 17 mW He-Ne laser was used for excitation. The widths of the entrance slit 154 

and confocal pinhole were set to 100 μm and 1000 μm, respectively. Raman spectrum 155 

between 200 and 2000 cm
-1

 was collected with a 5 s exposure time and 3 accumulations for 156 

each spectrum. 157 

 158 

Raman measurements of powder mixtures 159 

The solids of both barium nitrate and potassium chromate were ground and sorted into 160 



 9 

different particle sizes using standard sieves. The standard sieves were of mesh sizes 40, 60, 161 

80, 100, 120, 140, 160 and 200 wires per inch. The hole sizes corresponding to the mesh sizes 162 

are 425, 250, 180, 150, 125, 109, 96 and 75 μm, respectively. A total of 72 powder mixtures 163 

of potassium chromate and barium nitrate powder with different weight ratios (1:0, 0.90:0.10, 164 

0.75:0.25, 0.60:0.40, 0.50:0.50, 0.40:0.60, 0.25:0.75, 0.10:0.90 and 0:1) and different particle 165 

sizes (425, 250, 180, 150, 125, 109, 96 and 75 μm) were prepared by mixing appropriate 166 

amounts of the two constituents thoroughly (Table 1). For each of 72 powder mixtures, a 167 

sample was randomly taken and loosely packed into a cylindrical sample cup with a diameter 168 

of 6.9 mm and a height of 10.7 mm. The laser beam was focused at a point inside the sample 169 

so as to ensure the illumination of the whole upper surface of the sample by the laser beam, 170 

and then the Raman spectrum was acquired. Following this, each sample was packed more 171 

firmly, and a further Raman spectrum was recorded resulting in a total of 144 spectra. 172 

Seventy eight spectra (two outliers were removed) from the five mixtures with the ratios of 173 

potassium chromate to barium nitrate equal to 1:0, 0.75:0.25, 0.5:0.5, 0.25:0.75 and 0:1 174 

formed the calibration data set. The test set comprised the remaining 64 spectra from the 175 

other four mixtures. Distinctive Raman peaks of potassium chromate (at around 351, 386.5, 176 

396.8，853.4, 868.4, 877.8 and 906.8 cm
-1

) and barium nitrate (at about 1047.5 cm
-1

) can be 177 

readily observed between 292.8 and 1136.6 cm
-1

 (supporting information, Figure S-1). 178 

Therefore, Raman signals in this region were selected for the subsequent data analysis.  179 
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Table 1: Mass ratios and particle sizes of potassium chromate and barium nitrate in powder mixtures.  180 

 181 

 182 

 183 

 184 

 185 

 186 

 187 

 188 

 189 

 190 

Sample No. 

K2CrO4/Ba(NO3)2 

（mass ratio） 

Particle Size (μm) 

1 – 8 1:0 425, 250, 180, 150, 125, 109, 96, 75 

9 – 16 0.90:0.10 425, 250, 180, 150, 125, 109, 96, 75 

17 – 24 0.75:0.25 425, 250, 180, 150, 125, 109, 96, 75 

25 – 32 0.60:0.40 425, 250, 180, 150, 125, 109, 96, 75 

33 – 40 0.50:0.50 425, 250, 180, 150, 125, 109, 96, 75 

41 – 48 0.40:0.60 425, 250, 180, 150, 125, 109, 96, 75 

49 – 56 0.25:0.75 425, 250, 180, 150, 125, 109, 96, 75 

57 – 64 0.10:0.90 425, 250, 180, 150, 125, 109, 96, 75 

65 – 72 0:1 425, 250, 180, 150, 125, 109, 96, 75 
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Data analysis 191 

Due to the influence of particle size and compactness on Raman intensities, it is unlikely that 192 

univariate analysis will give accurate predictions of the mass fractions of barium nitrate in 193 

powder mixtures. Therefore, PLS and the dual calibration strategy (DCS) were adopted for 194 

the data analysis and their performance in terms of providing accurate predictions for the 195 

mass fractions of barium nitrate in powder mixtures were compared. The effectiveness of 196 

multiplicative signal correction (MSC)
 31

, standard normal variate (SNV)
 32

 and extended 197 

inverted signal correction (EISC)
 33

 in correcting the confounding effects of physical 198 

properties of powder samples on the Raman measurements and improving the predictive 199 

abilities of PLS calibration models were also investigated. For the convenience of 200 

presentation, PLS calibration models built on the mean-centred raw and preprocessed Raman 201 

spectra by MSC, EISC and SNV are denoted by PLS_raw, PLS_MSC, PLS_EISC and 202 

PLS_SNV, respectively. No pre-processing methods other than mean-centring were used 203 

when building DCS calibration models. The optimal calibration models were selected 204 

through a cross-validation procedure. During cross-validation, the Raman spectra of the 205 

calibration samples with the same mass ratio of potassium chromate to barium nitrate were 206 

left out in turn and the root mean square error of prediction from cross validation (RMSEPcv) 207 

values were calculated. The calibration models with the minimal RMSEPcv values were 208 

taken as the optimal models, and were then used to predict the mass fractions of barium 209 

nitrate in the test samples. The data analysis was performed on a Pentium class computer 210 

using Matlab version 6.5 (Mathworks, Inc). All the programmes including DSC, PLS, MSC, 211 

SNV, and EISC were written in house. 212 

213 
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Results and discussion 214 

The sensitivity of Raman intensities to the mass fraction of barium nitrate 215 

Figure 1a shows the Raman spectra of powder mixtures samples with the same particle size 216 

(250 μm) and similar compactness but different mass ratios of potassium chromate to barium 217 

nitrate. The Raman peaks are relatively sensitive to the changes in the composition of the 218 

powder mixtures. The Raman peak intensity at 1047.5 cm
-1

 generally increases with mass 219 

fraction of barium nitrate in the powder samples. However, the relationship between Raman 220 

peak intensity and mass fraction of barium nitrate deviates from a perfect linear model even 221 

when samples have a similar particle size and degree of compactness (Figure 1b). Especially 222 

there is a discontinuity which might be caused by the variation in excitation intensity or 223 

packing density. This demonstrates the necessity to introduce the multiplicative parameter, qk, 224 

in eq.4 to account for the variations in Raman intensities caused by the changes in variables 225 

other than the mass fractions of the constituents in the powder mixtures.  226 

 227 

 228 

 229 

 230 

 231 

 232 

 233 

 234 

 235 
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Figure 1: a) Raman spectra of loosely packed powder mixture samples (particle size: 250 μm) with 

different mass ratios of potassium chromate to barium nitrate (red solid line: 0.9:0.1; blue dash-dot-dot line: 

0.60:0.40; green dash-dot line: 0.40:0.60; black dash line: 0.10:0.90); b) Raman peak intensity at 

1047.5 cm
-1

 vs mass fraction of barium nitrate in loosely packed powder mixture samples (particle size: 

250 μm). 
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The effects of particle size and compactness on Raman intensities  237 

In addition to the mass ratio of potassium chromate to barium nitrate, the particle size and 238 

compactness of the powder mixture samples also have a significant influence on the Raman 239 

peak intensities. As shown in Figure 2a, a firmly packed sample has significantly more 240 

intense Raman peaks than those of a loosely packed sample with the same mass ratio and 241 

particle size. It has long been known that particle size differences make significant 242 

contributions to the spectral variations in Raman measurements of powders
 22

. Our 243 

experimental results also show that variations in particle size of powder samples have 244 

significant effects on the Raman spectra (Figure 2b). For two samples with the same particle 245 

size (109 μm) but different mass ratios of potassium chromate to barium nitrate (e.g. 246 

0.25:0.75 and 0.10:0.90), the difference between the peak intensities at 1047.5 cm
-1

 is 59.04. 247 

While for two samples with the same mass ratio of potassium chromate to barium nitrate 248 

(0.10:0.90) but different particle sizes (e.g. 109 and 75 μm), the difference between the 249 

corresponding peak intensities is 113.63, which is about 1.9 times that caused by a change in 250 

the mass ratio of potassium chromate to barium nitrate from 0.25:0.75 to 0.90:0.10. Moreover, 251 

variation in the particle size of a sample has the same effect on all Raman peaks in the 252 

spectrum. This makes it difficult to discriminate Raman intensity contributions caused by 253 

changes in a sample’s particle size from those due to a variation in mass fractions of the 254 

chemical constituents using traditional univariate/multivariate calibration methods. If not 255 

properly modelled, this difference would significantly degrade the accuracy and reliability of 256 

calibration models built on Raman measurements contaminated by such confounding effects. 257 

The multiplicative parameter, qk, in eq.4 accounts for the effects of particle size and 258 
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compactness on the Raman intensities and so their effects can be separated from those of the 259 

mass fractions of the chemical constituents in powder samples by the unique dual calibration 260 

strategy.  261 
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Figure 2: a) Raman spectra of a binary powder mixture sample (potassium chromate:barium nitrate: 

0.90:0.10, particle size: 425 μm ) with different compactness (blue dash line: firmly packed; red solid line: 

loosely packed); b) peak intensity at 1047.5 cm
-1

 vs mass fraction of barium nitrate with different particle 

sizes (black circle: 180 μm ; blue triangle: 109 μm ; red square: 75 μm). 
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Correction of the multiplicative effects of particle size and compactness on Raman intensities  282 

As shown in the preceding section, the presence of significant multiplicative confounding 283 

effects (arising from differences in particle size and compactness) caused deviations in the 284 

linear relationship between the Raman intensities and the mass fraction of solid powder 285 

samples. With a view to mitigate the influence of the multiplicative confounding effects 286 

present in the Raman spectral data, the dual calibration strategy (DCS) was employed to 287 

correct such confounding effects. For the purpose of comparison, PLS models with and 288 

without the use of pre-processing methods MSC, EISC and SNV were also applied to the 289 

same Raman spectral data. DCS involves the estimation of the multiplicative parameter, qk, 290 

for each calibration sample by OPLECm 
30

. The implementation of OPLECm requires the 291 

determination of the number of spectral variation sources including chemical components and 292 

possible interference(s). For the powder mixture samples studied in this paper, the number of 293 

spectral variation sources is two, i.e. potassium chromate and barium nitrate. The results of 294 

OPLECm are shown in Figure 3. It is evident that different calibration samples generally have 295 

different multiplicative parameter values (qk) and the multiplicative parameter, qk, of the 296 

calibration samples varies in the range of 1 – 2.23. These results demonstrate that the 297 

presence of significant multiplicative confounding effects in the Raman spectral data and the 298 

introduction of the multiplicative parameter, qk, in eq.4 is theoretically sound and also 299 

practically relevant. Otherwise, the multiplicative parameter values (qk) calculated by 300 

OPLECm for the calibration samples would vary within a narrow range, and would also be 301 

quite close to 1.  302 
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Figure 3: the multiplicative parameter qk for the calibration samples estimated by OPLECm. 
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After the calculation of the multiplicative parameters, qk, for each calibration sample by 315 

OPLECm, DCS models with different underlying components were built. Values of the root 316 

mean square error of prediction from cross validation (RMSEPcv) obtained by DCS and the 317 

various PLS calibration models (i.e. PLS_raw, PLS_MSC, PLS_EISC and PLS_SNV) with 318 

different number of latent variables are given in supporting information, Figure S-2. Both the 319 

PLS_raw and PLS_MSC models attained minimum RMSEPcv values of 0.08 and 0.12, 320 

respectively, when two latent variables were used. For PLS_EISC and PLS_SNV, only one 321 

latent variable was suggested by cross validation; however, the RMSEPcv values of 0.26 and 322 

0.23, respectively, were significantly larger than that for PLS_raw, which to some extent 323 

indicates the inappropriateness of applying EISC and SNV to this particular Raman spectral 324 

data set. In contrast with the above PLS calibration models, a DCS model with three latent 325 

variables had a minimum RMSEPcv value of 0.03, which is less than half that of the 326 

corresponding value obtained with the PLS_raw model.  327 

For a more convincing comparison, the performance of the optimal DCS and various 328 

PLS calibration models for the independent test samples was investigated. As shown in 329 

Figure 4 and Figure 5, the RMSEP value of the optimal PLS_raw model obtained for the 330 

independent test samples was 0.08 (equivalent to a mean relative prediction error of 30.8%), 331 

which clearly demonstrates the presence of detrimental multiplicative confounding effects 332 

caused by variations in the particle size and compactness of powder samples. The application 333 

of MSC, EISC and SNV resulted in a deterioration of the predictive ability of the PLS 334 

calibration models. This confirms that the pre-processing methods MSC, EISC and SNV 335 

cannot effectively correct the multiplicative confounding effects of particle size and 336 
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compactness on Raman intensities. In contrast, the optimal DCS model with 3 latent variables 337 

achieved a RMSEP value of 0.04 for the independent test samples, which is equivalent to a 338 

mean relative prediction error of 9.6%, less than one third of the corresponding value for the 339 

optimal PLS_raw model. Even more interestingly, though the construction of the DCS model 340 

requires no extra information or data compared to the PLS models, it consistently 341 

outperformed the various PLS models built on the raw and pre-processed Raman spectra, no 342 

matter how many latent variables were used (Figure S-3 in supporting information). The 343 

significant reduction in the RMSEP value achieved with the optimal DCS model results 344 

solely from the introduction of the multiplicative parameter, qk, in eq. 4 to account for the 345 

variations in Raman intensities caused by the changes in variables other than the mass 346 

fractions of the chemical constituents in powder mixtures, in this case particle size and 347 

compactness. 348 

 349 
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Figure 4: the RMSEP values for both the calibration and independent test samples obtained by different 

calibration methods. 
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Figure 5: the mass fractions of Ba(NO3)2 in the calibration (blue circle) and independent test (red triangle) 

samples predicted by various calibration models (a: DCS; b: PLS_raw; c: PLS_MSC; d: PLS_SNV; e: 

PLS_EISC) 
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Conclusions 372 

The Raman intensities of powder mixture samples depend on not only the mass fractions of 373 

the chemical constituents but also the physical properties of samples such as particle size 374 

distribution and compactness. The experimental results on a model system of powder 375 

mixtures consisting of barium nitrate and potassium chromate showed that the effects of 376 

particle size distribution and compactness on Raman measurements are multiplicative, which 377 

cannot be effectively modelled by multivariate linear calibration methods such as PLS. 378 

Pre-processing the Raman measurements with multiplicative confounding effects of particle 379 

size and compactness by MSC, SNV or EISC could not improve but rather deteriorated the 380 

predictive performance of Raman calibration models. In this work, we introduced a 381 

multiplicative parameter in the quantitative Raman calibration model to explicitly account for 382 

the confounding effects of particle size and compactness on Raman signals of powder 383 

mixtures, and then eliminated the confounding effects through a unique dual calibration 384 

strategy. The average relative prediction error of predictions obtained by the dual calibration 385 

strategy for the independent test samples was less than one-third of the corresponding value 386 

of the optimal PLS calibration models built using the raw Raman spectra and considerably 387 

better than the results of PLS models based on spectra pre-processed by application of MSC, 388 

EISC or SNV. These results demonstrate that the dual calibration strategy can effectively 389 

mitigate the confounding effects of samples’ physical properties and so improve the accuracy 390 

of quantitative analysis of powders using Raman spectrometry. Hence, the dual calibration 391 

strategy will be of major benefit for quantitative measurement of particulate samples such as 392 

powder blends and pharmaceutical dosage forms. 393 

394 
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