658 research outputs found

    Vacuum Energy Density and Cosmological Constant in dS Brane World

    Full text link
    We discuss the vacuum energy density and the cosmological constant of dS5_5 brane world with a dilaton field. It is shown that a stable AdS4_4 brane can be constructed and gravity localization can be realized. An explicit relation between the dS bulk cosmological constant and the brane cosmological constant is obtained. The discrete mass spectrum of the massive scalar field in the AdS4_4 brane is used to acquire the relationship between the brane cosmological constant and the vacuum energy density. The vacuum energy density in the brane gotten by this method is in agreement with astronomical observations.Comment: 16 pages,4 figure

    e±e^\pm Excesses in the Cosmic Ray Spectrum and Possible Interpretations

    Full text link
    The data collected by ATIC, PPB-BETS, FERMI-LAT and HESS all indicate that there is an electron/positron excess in the cosmic ray energy spectrum above \sim 100 GeV, although different instrumental teams do not agree on the detailed spectral shape. PAMELA also reported a clear excess feature of the positron fraction above several GeV, but no excess in anti-protons. Here we review the observational status and theoretical models of this interesting observational feature. We pay special attention to various physical interpretations proposed in the literature, including modified supernova remnant models for the e±e^\pm background, new astrophysical sources, and new physics (the dark matter models). We suggest that although most models can make a case to interpret the data, with the current observational constraints the dark matter interpretations, especially those invoking annihilation, require much more exotic assumptions than some astrophysical interpretations. Future observations may present some ``smoking-gun'' observational tests to differentiate among different models and to identify the correct interpretation to the phenomenon.Comment: 48 pages, including 10 figures and 1 tabel. Invited review to be published in IJMP

    The Soft Gluon Emission Process in the Color-Octet Model for Heavy Quarkonium Production

    Get PDF
    The Color-Octet Model has been used successfully to analyze many problems in heavy quarkonium production. We examine some of the conceptual and practical problems of the soft gluon emission process in the Color-Octet Model. We use a potential model to describe the initial and final states in the soft gluon emission process, as the emission occurs at a late stage after the production of the heavy quark pair. It is found in this model that the soft gluon M1 transition, 1S0(8)->3S1(1), dominates over the E1 transition, 3PJ(8)->3S1(1), for J/psi and psi' production. Such a dominance may help resolve the questions of isotropic polarization and color-octet matrix element universality in the Color-Octet Model.Comment: 26 pages, in LaTe

    Modeling realistic Earth matter density for CP violation in neutrino oscillation

    Full text link
    We examine the effect of a more realistic Earth matter density model which takes into account of the local density variations along the baseline of a possi ble 2100 km very long baseline neutrino oscillation experiment. Its influence to the measurement of CP violation is investigated and a comparison with the commonly used global density models made. Significant differences are found in the comparison of the results of the different density models.Comment: 16 pages, 8 figure

    Gradient microfluidics enables rapid bacterial growth inhibition testing

    Get PDF
    Bacterial growth inhibition tests have become a standard measure of the adverse effects of inhibitors for a wide range of applications, such as toxicity testing in the medical and environmental sciences. However, conventional well-plate formats for these tests are laborious and provide limited information (often being restricted to an end-point assay). In this study, we have developed a microfluidic system that enables fast quantification of the effect of an inhibitor on bacteria growth and survival, within a single experiment. This format offers a unique combination of advantages, including long-term continuous flow culture, generation of concentration gradients, and single cell morphology tracking. Using Escherichia coli and the inhibitor amoxicillin as one model system, we show excellent agreement between an on-chip single cell-based assay and conventional methods to obtain quantitative measures of antibiotic inhibition (for example, minimum inhibition concentration). Furthermore, we show that our methods can provide additional information, over and above that of the standard well-plate assay, including kinetic information on growth inhibition and measurements of bacterial morphological dynamics over a wide range of inhibitor concentrations. Finally, using a second model system, we show that this chip-based systems does not require the bacteria to be labeled and is well suited for the study of naturally occurring species. We illustrate this using Nitrosomonas europaea, an environmentally important bacteria, and show that the chip system can lead to a significant reduction in the period required for growth and inhibition measurements (<4 days, compared to weeks in a culture flask)

    Holographic equations of state and astrophysical compact objects

    Full text link
    We solve the Tolman-Oppenheimer-Volkoff equation using an equation of state (EoS) calculated in holographic QCD. The aim is to use compact astrophysical objects like neutron stars as an indicator to test holographic equations of state. We first try an EoS from a dense D4/D8/\textoverline {D8} model. In this case, however, we could not find a stable compact star, a star satisfying pressure-zero condition with a radius RR, p(R)=0p(R)=0, within a reasonable value of the radius. This means that the EoS from the D4/D8/\textoverline {D8} model may not support any stable compact stars or may support one whose radius is very large. This might be due to a deficit of attractive force from a scalar field or two-pion exchange in the D4/D8/\textoverline {D8} model. Then, we consider D4/D6 type models with different number of quark flavors, Nf=1,2,3N_f=1,2,3. Though the mass and radius of a holographic star is larger than those of normal neutron stars, the D4/D6 type EoS renders a stable compact star.Comment: 12 pages, 9 figure

    Medium modification of jet fragmentation in Au+Au collisions at sqrt(s_NN)=200 GeV measured in direct photon-hadron correlations

    Full text link
    The jet fragmentation function is measured with direct photon-hadron correlations in p+p and Au+Au collisions at sqrt(s_NN)=200 GeV. The p_T of the photon is an excellent approximation to the initial p_T of the jet and the ratio z_T=p_T^h/p_T^\gamma is used as a proxy for the jet fragmentation function. A statistical subtraction is used to extract the direct photon-hadron yields in Au+Au collisions while a photon isolation cut is applied in p+p. I_ AA, the ratio of jet fragment yield in Au+Au to that in p+p, indicates modification of the jet fragmentation function. Suppression, most likely due to energy loss in the medium, is seen at high z_T. The fragment yield at low z_T is enhanced at large angles. Such a trend is expected from redistribution of the lost energy into increased production of low-momentum particles.Comment: 562 authors, 70 insitutions, 8 pages, and 3 figures. Submitted to Phys. Rev. Lett. v2 has minor changes to improve clarity. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Measurement of Υ\Upsilon(1S+2S+3S) production in pp++pp and Au++Au collisions at sNN=200\sqrt{s_{_{NN}}}=200 GeV

    Full text link
    Measurements of bottomonium production in heavy ion and pp++pp collisions at the Relativistic Heavy Ion Collider (RHIC) are presented. The inclusive yield of the three Υ\Upsilon states, Υ(1S+2S+3S)\Upsilon(1S+2S+3S), was measured in the PHENIX experiment via electron-positron decay pairs at midrapidity for Au++Au and pp++pp collisions at sNN=200\sqrt{s_{_{NN}}}=200 GeV. The Υ(1S+2S+3S)e+e\Upsilon(1S+2S+3S)\rightarrow e^+e^- differential cross section at midrapidity was found to be Beedσ/dy=B_{\rm ee} d\sigma/dy = 108 ±\pm 38 (stat) ±\pm 15(syst) ±\pm 11 (luminosity) pb in pp++pp collisions. The nuclear modification factor in the 30\% most central Au++Au collisions indicates a suppression of the total Υ\Upsilon state yield relative to the extrapolation from pp++pp collision data. The suppression is consistent with measurements made by STAR at RHIC and at higher energies by the CMS experiment at the Large Hadron Collider.Comment: 506 authors, 15 pages, 17 figures, and 7 tables. v3 is as accepted by Phys. Rev. C. v2 has changes to text and figures, plus additional authors. Published version will be at http://www.phenix.bnl.gov/phenix/WWW/info/pp1/1NN/ Plain text data tables are (or will be) at http://www.phenix.bnl.gov/papers.htm
    corecore