63 research outputs found

    Minor Abnormalities of Testis Development in Mice Lacking the Gene Encoding the MAPK Signalling Component, MAP3K1

    Get PDF
    In mammals, the Y chromosome is a dominant male determinant, causing the bipotential gonad to develop as a testis. Recently, cases of familial and spontaneous 46,XY disorders of sex development (DSD) have been attributed to mutations in the human gene encoding mitogen-activated protein kinase kinase kinase 1, MAP3K1, a component of the mitogen-activated protein kinase (MAPK) signal transduction pathway. In individuals harbouring heterozygous mutations in MAP3K1, dysregulation of MAPK signalling was observed in lymphoblastoid cell lines, suggesting a causal role for these mutations in disrupting XY sexual development. Mice lacking the cognate gene, Map3k1, are viable and exhibit the eyes open at birth (EOB) phenotype on a mixed genetic background, but on the C57BL/6J genetic background most mice die at around 14.5 dpc due to a failure of erythropoiesis in the fetal liver. However, no systematic examination of sexual development in Map3k1-deficient mice has been described, an omission that is especially relevant in the case of C57BL/6J, a genetic background that is sensitized to disruptions to testis determination. Here, we report that on a mixed genetic background mice lacking Map3k1 are fertile and exhibit no overt abnormalities of testis development. On C57BL/6J, significant non-viability is observed with very few animals surviving to adulthood. However, an examination of development in Map3k1-deficient XY embryos on this genetic background revealed no significant defects in testis determination, although minor abnormalities were observed, including an increase in gonadal length. Based on these observations, we conclude that MAP3K1 is not required for mouse testis determination. We discuss the significance of these data for the functional interpretation of sex-reversing MAP3K1 mutations in humans

    Human oocyte-derived methylation differences persist in the placenta revealing widespread transient imprinting

    Get PDF
    Thousands of regions in gametes have opposing methylation profiles that are largely resolved during the post-fertilization epigenetic reprogramming. However some specific sequences associated with imprinted loci survive this demethylation process. Here we present the data describing the fate of germline-derived methylation in humans. With the exception of a few known paternally methylated germline differentially methylated regions (DMRs) associated with known imprinted domains, we demonstrate that sperm-derived methylation is reprogrammed by the blastocyst stage of development. In contrast a large number of oocyte-derived methylation differences survive to the blastocyst stage and uniquely persist as transiently methylated DMRs only in the placenta. Furthermore, we demonstrate that this phenomenon is exclusive to primates, since no placenta-specific maternal methylation was observed in mouse. Utilizing single cell RNA-seq datasets from human preimplantation embryos we show that following embryonic genome activation the maternally methylated transient DMRs can orchestrate imprinted expression. However despite showing widespread imprinted expression of genes in placenta, allele-specific transcriptional profiling revealed that not all placenta-specific DMRs coordinate imprinted expression and that this maternal methylation may be absent in a minority of samples, suggestive of polymorphic imprinted methylation

    Mammalian sex determination—insights from humans and mice

    Get PDF
    Disorders of sex development (DSD) are congenital conditions in which the development of chromosomal, gonadal, or anatomical sex is atypical. Many of the genes required for gonad development have been identified by analysis of DSD patients. However, the use of knockout and transgenic mouse strains have contributed enormously to the study of gonad gene function and interactions within the development network. Although the genetic basis of mammalian sex determination and differentiation has advanced considerably in recent years, a majority of 46,XY gonadal dysgenesis patients still cannot be provided with an accurate diagnosis. Some of these unexplained DSD cases may be due to mutations in novel DSD genes or genomic rearrangements affecting regulatory regions that lead to atypical gene expression. Here, we review our current knowledge of mammalian sex determination drawing on insights from human DSD patients and mouse models

    Molecular genetic analysis of podocyte genes in focal segmental glomerulosclerosis—a review

    Get PDF
    This review deals with podocyte proteins that play a significant role in the structure and function of the glomerular filter. Genetic linkage studies has identified several genes involved in the development of nephrotic syndrome and contributed to the understanding of the pathophysiology of glomerular proteinuria and/or focal segmental glomerulosclerosis. Here, we describe already well-characterized genetic diseases due to mutations in nephrin, podocin, CD2AP, alpha-actinin-4, WT1, and laminin β2 chain, as well as more recently identified genetic abnormalities in TRPC6, phospholipase C epsilon, and the proteins encoded by the mitochondrial genome. In addition, the role of the proteins which have shown to be important for the structure and functions by gene knockout studies in mice, are also discussed. Furthermore, some rare syndromes with glomerular involvement, in which molecular defects have been recently identified, are briefly described. In summary, this review updates the current knowledge of genetic causes of congenital and childhood nephrotic syndrome and provides new insights into mechanisms of glomerular dysfunction

    The placenta: phenotypic and epigenetic modifications induced by Assisted Reproductive Technologies throughout pregnancy

    Get PDF

    Gestational tissue transcriptomics in term and preterm human pregnancies: a systematic review and meta-analysis

    Get PDF

    New rapidly solidified aluminium alloys for elevated temperature applications on aerospace structures

    No full text
    This paper presents the results of a cooperative study between AEROSPATIALE, DASSAULT AVIATION, BRITISH AEROSPACE, ALENIA, IMPERIAL COLLEGE, CEREM, ALPOCO, RAUFOSS A/S, CENIM AND THE UNIVERSITYOF PISA supported by the CEC under BRITE EURAM contract BREU 0356 C which aims at developping a new Aluminium alloy for use at 250 - 300°C by Rapid Solidification /Powder Metallurgy technology. Tensile and creep properties at temperatures up to 350°C, fracture toughness and corrosion results on 11 alloys from the Al-Fe-V, Al-Fe-Mo, Al-Cr-Ni and Al-Mn-Ni systems are presented and discussed. Their stability for long exposures at temperatures up to 350°C is demonstrated on the basis of fine microstructural investigations and mechanical tests. The cross effect of the Iron content and the powder size distribution is detailed in the case of the gas atomization process for the Al-Fe-V system. The results obtained on the most promising products are detailed and compared to those available on existing 8009 and 8019 alloys. Potential applications on aerospace structures are described

    The fracture behaviour of SiC reinforced SiAlYON ceramic matrix composites

    No full text
    This paper presents the results of a study carried out at the AEROSPATIALE Joint Research Center on SiAlYON Matrix Composites reinforced with 0, 10, 20 and 30% of SiC whiskers. Firstly the test methodology for measuring the K1c is described. The SENB (Single Edge Notched Beam) specimen pre-cracked in compression cycling is compared to the Chevron Notched bend bar test. In both cases the fracture toughness is measured in a bend test more adapted for tests at elevated temperatures. Then the crack propagation at elevated temperature of the composite for the four SiCw volume fractions is described and discussed in relationship with the rheological behaviour of the matrix and the volume fraction of reinforcement. Keywords : Ceramic Matrix Composites - SiC - Whisker - SiAlYON - Fracture Behaviou
    corecore