257 research outputs found

    Hybrid Equation/Agent-Based Model of Ischemia-Induced Hyperemia and Pressure Ulcer Formation Predicts Greater Propensity to Ulcerate in Subjects with Spinal Cord Injury

    Get PDF
    Pressure ulcers are costly and life-threatening complications for people with spinal cord injury (SCI). People with SCI also exhibit differential blood flow properties in non-ulcerated skin. We hypothesized that a computer simulation of the pressure ulcer formation process, informed by data regarding skin blood flow and reactive hyperemia in response to pressure, could provide insights into the pathogenesis and effective treatment of post-SCI pressure ulcers. Agent-Based Models (ABM) are useful in settings such as pressure ulcers, in which spatial realism is important. Ordinary Differential Equation-based (ODE) models are useful when modeling physiological phenomena such as reactive hyperemia. Accordingly, we constructed a hybrid model that combines ODEs related to blood flow along with an ABM of skin injury, inflammation, and ulcer formation. The relationship between pressure and the course of ulcer formation, as well as several other important characteristic patterns of pressure ulcer formation, was demonstrated in this model. The ODE portion of this model was calibrated to data related to blood flow following experimental pressure responses in non-injured human subjects or to data from people with SCI. This model predicted a higher propensity to form ulcers in response to pressure in people with SCI vs. non-injured control subjects, and thus may serve as novel diagnostic platform for post-SCI ulcer formation. © 2013 Solovyev et al

    RNA editing signature during myeloid leukemia cell differentiation

    Get PDF
    Adenosine deaminases acting on RNA (ADARs) are key proteins for hematopoietic stem cell self-renewal and for survival of differentiating progenitor cells. However, their specific role in myeloid cell maturation has been poorly investigated. Here we show that ADAR1 is present at basal level in the primary myeloid leukemia cells obtained from patients at diagnosis as well as in myeloid U-937 and THP1 cell lines and its expression correlates with the editing levels. Upon phorbol-myristate acetate or Vitamin D3/granulocyte macrophage colony-stimulating factor (GM-CSF)-driven differentiation, both ADAR1 and ADAR2 enzymes are upregulated, with a concomitant global increase of A-to-I RNA editing. ADAR1 silencing caused an editing decrease at specific ADAR1 target genes, without, however, interfering with cell differentiation or with ADAR2 activity. Remarkably, ADAR2 is absent in the undifferentiated cell stage, due to its elimination through the ubiquitin–proteasome pathway, being strongly upregulated at the end of the differentiation process. Of note, peripheral blood monocytes display editing events at the selected targets similar to those found in differentiated cell lines. Taken together, the data indicate that ADAR enzymes play important and distinct roles in myeloid cells

    Nationwide Genomic Study in Denmark Reveals Remarkable Population Homogeneity

    Get PDF
    Denmark has played a substantial role in the history of Northern Europe. Through a nationwide scientific outreach initiative, we collected genetic and anthropometrical data from ∼800 high school students and used them to elucidate the genetic makeup of the Danish population, as well as to assess polygenic predictions of phenotypic traits in adolescents. We observed remarkable homogeneity across different geographic regions, although we could still detect weak signals of genetic structure reflecting the history of the country. Denmark presented genomic affinity with primarily neighboring countries with overall resemblance of decreasing weight from Britain, Sweden, Norway, Germany, and France. A Polish admixture signal was detected in Zealand and Funen, and our date estimates coincided with historical evidence of Wend settlements in the south of Denmark. We also observed considerably diverse demographic histories among Scandinavian countries, with Denmark having the smallest current effective population size compared to Norway and Sweden. Finally, we found that polygenic prediction of self-reported adolescent height in the population was remarkably accurate (R2 = 0.639 ± 0.015). The high homogeneity of the Danish population could render population structure a lesser concern for the upcoming large-scale gene-mapping studies in the country

    Structural and functional insights into human Tudor-SN, a key component linking RNA interference and editing

    Get PDF
    Human Tudor-SN is involved in the degradation of hyper-edited inosine-containing microRNA precursors, thus linking the pathways of RNA interference and editing. Tudor-SN contains four tandem repeats of staphylococcal nuclease-like domains (SN1–SN4) followed by a tudor and C-terminal SN domain (SN5). Here, we showed that Tudor-SN requires tandem repeats of SN domains for its RNA binding and cleavage activity. The crystal structure of a 64-kD truncated form of human Tudor-SN further shows that the four domains, SN3, SN4, tudor and SN5, assemble into a crescent-shaped structure. A concave basic surface formed jointly by SN3 and SN4 domains is likely involved in RNA binding, where citrate ions are bound at the putative RNase active sites. Additional modeling studies provide a structural basis for Tudor-SN's preference in cleaving RNA containing multiple I·U wobble-paired sequences. Collectively, these results suggest that tandem repeats of SN domains in Tudor-SN function as a clamp to capture RNA substrates

    Hopf algebras and Markov chains: Two examples and a theory

    Get PDF
    The operation of squaring (coproduct followed by product) in a combinatorial Hopf algebra is shown to induce a Markov chain in natural bases. Chains constructed in this way include widely studied methods of card shuffling, a natural "rock-breaking" process, and Markov chains on simplicial complexes. Many of these chains can be explictly diagonalized using the primitive elements of the algebra and the combinatorics of the free Lie algebra. For card shuffling, this gives an explicit description of the eigenvectors. For rock-breaking, an explicit description of the quasi-stationary distribution and sharp rates to absorption follow.Comment: 51 pages, 17 figures. (Typographical errors corrected. Further fixes will only appear on the version on Amy Pang's website, the arXiv version will not be updated.

    Characteristics of transposable element exonization within human and mouse

    Get PDF
    Insertion of transposed elements within mammalian genes is thought to be an important contributor to mammalian evolution and speciation. Insertion of transposed elements into introns can lead to their activation as alternatively spliced cassette exons, an event called exonization. Elucidation of the evolutionary constraints that have shaped fixation of transposed elements within human and mouse protein coding genes and subsequent exonization is important for understanding of how the exonization process has affected transcriptome and proteome complexities. Here we show that exonization of transposed elements is biased towards the beginning of the coding sequence in both human and mouse genes. Analysis of single nucleotide polymorphisms (SNPs) revealed that exonization of transposed elements can be population-specific, implying that exonizations may enhance divergence and lead to speciation. SNP density analysis revealed differences between Alu and other transposed elements. Finally, we identified cases of primate-specific Alu elements that depend on RNA editing for their exonization. These results shed light on TE fixation and the exonization process within human and mouse genes.Comment: 11 pages, 4 figure

    p150 ADAR1 isoform involved in maintenance of HeLa cell proliferation

    Get PDF
    BACKGROUND: RNA-specific adenosine deaminase ADAR1 is ubiquitously expressed in a variety of mammalian cells and tissues. Although its physiological importance in non-nervous tissues has been confirmed by analysis of null mutation phenotypes, few endogenous editing substrates have been identified in numerous peripheral tissues and biological function of ADAR1 has not been fully understood. METHODS: A conditional site-specific, ribozyme-based gene knock-down strategy was utilized to study the function of full-length isoform of ADAR1 (p150 protein) in HeLa cell. Double-stable HeLa cell lines were developed by transfecting HeLa Tet-On cells with a pTRE-derived plasmid that can express a hammerhead ribozyme against mRNA of p150 ADAR1 isoform under induction condition. Semi-quantitative RT-PCR and Western blotting were performed to measure the expression of p150 in selected cell clones. Cell proliferation was evaluated by means of MTT assay and growth curve analysis. Cellular morphological changes were observed under light microscope. Flow Cytometry was used for cell cycle analysis. Growth rate of cell transplants in BALB/c nude mice was also investigated. RESULTS: Both HeLa cell proliferation in vitro and the growth rate of transplanted HeLa cell-derived tumors in nude mice in vivo were significantly inhibited due to reduced expression of ADAR1 p150. Additionally, cell cycle analysis showed that cell progression from G1 phase to S phase was retarded in the ADAR1 p150 suppressed cells. CONCLUSION: Our results suggest that normal expression and functioning of p150 ADAR1 is essential for the maintenance of proper cell growth. The mechanisms underlying ADAR1's action might include both editing of currently unknown double-stranded RNAs and interacting with other cellular dsRNA-related processes

    Frequency and fate of microRNA editing in human brain

    Get PDF
    Primary transcripts of certain microRNA (miRNA) genes (pri-miRNAs) are subject to RNA editing that converts adenosine to inosine (A→I RNA editing). However, the frequency of the pri-miRNA editing and the fate of edited pri-miRNAs remain largely to be determined. Examination of already known pri-miRNA editing sites indicated that adenosine residues of the UAG triplet sequence might be edited more frequently. In the present study, therefore, we conducted a large-scale survey of human pri-miRNAs containing the UAG triplet sequence. By direct sequencing of RT–PCR products corresponding to pri-miRNAs, we examined 209 pri-miRNAs and identified 43 UAG and also 43 non-UAG editing sites in 47 pri-miRNAs, which were highly edited in human brain. In vitro miRNA processing assay using recombinant Drosha-DGCR8 and Dicer-TRBP (the human immuno deficiency virus transactivating response RNA-binding protein) complexes revealed that a majority of pri-miRNA editing is likely to interfere with the miRNA processing steps. In addition, four new edited miRNAs with altered seed sequences were identified by targeted cloning and sequencing of the miRNAs that would be processed from edited pri-miRNAs. Our studies predict that ∼16% of human pri-miRNAs are subject to A→I editing and, thus, miRNA editing could have a large impact on the miRNA-mediated gene silencing
    corecore