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ORIGINAL ARTICLE

RNA editing signature during myeloid leukemia cell

differentiation

C Rossetti', E Picardi*3, M Ye!, G Camilli', AM D’Erchia®3, L Cucina®, F Locatelli**, L Fianchi®, L Teofili® G Pesole?3, A Gallo*

and R Sorrentino’

Adenosine deaminases acting on RNA (ADARs) are key proteins for hematopoietic stem cell self-renewal and for survival of
differentiating progenitor cells. However, their specific role in myeloid cell maturation has been poorly investigated. Here we show that
ADAR1 is present at basal level in the primary myeloid leukemia cells obtained from patients at diagnosis as well as in myeloid U-937
and THP1 cell lines and its expression correlates with the editing levels. Upon phorbol-myristate acetate or Vitamin D3/granulocyte
macrophage colony-stimulating factor (GM-CSF)-driven differentiation, both ADAR1 and ADAR2 enzymes are upregulated, with a
concomitant global increase of A-to-] RNA editing. ADAR1 silencing caused an editing decrease at specific ADAR1 target genes,
without, however, interfering with cell differentiation or with ADAR2 activity. Remarkably, ADAR2 is absent in the undifferentiated cell
stage, due to its elimination through the ubiquitin—proteasome pathway, being strongly upregulated at the end of the differentiation
process. Of note, peripheral blood monocytes display editing events at the selected targets similar to those found in differentiated cell
lines. Taken together, the data indicate that ADAR enzymes play important and distinct roles in myeloid cells.
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INTRODUCTION

RNA editing is an important posttranscriptional process able to
increase transcriptome and proteome.'™ In humans, the most
common type of RNA editing is mediated by ADAR enzymes,
which convert adenosine into inosine within double-stranded RNA
(dsRNA). This modification is mediated by two adenosine
deaminases acting on dsRNA: ADAR1 (ADAR) and ADAR2
(ADARB1) whose function is tightly regulated. ADAR1 has at least
two protein isoforms, a constitutive p110 and an inducible p150.
Although p110 is localized in the nucleus, the p150 isoform,
thanks to its nuclear export sequence, is also present within the
cytoplasm.*® A-to-l editing is pervasive in Alu elements due to
their ability to form dsRNA structures.® How dsRNA structures are
formed and whether there are ‘flag’ sequences that allow ADAR
enzymes to identify the possible targets is matter of intense
studies.”® As inosine is read as guanosine by splicing and
translation machineries, ADARs can also alter splicing patterns
and change amino-acid sequence. Genomic ablation of either
Adarl or Adar2 in mice is lethal, indicating that both these
enzymes are essential in vivo.” Several pathological conditions
were also linked to ADAR dysfunctions, such as neurological
disorders, autoimmunity, cancer and viral infections.'®'®

In particular, ADAR1 has been shown to be essential for
proliferation and differentiation of cells of both erythroid and
myeloid lineage.'”'® Lineage commitment toward myeloid
differentiation is a complex, multistep mechanism marked by
distinct transcriptional and translational changes, including the
expression of specific cell surface markers and epigenetic
modifications leading to typical morphological changes.'® Here
we investigated the modulation of ADARs expression and activity

in myeloid leukemia cells throughout differentiation along the
monocyte/macrophage axis, with focus on recoding sites in
differentiated cells.

MATERIALS AND METHODS
Cells

Human histiocytic leukemia U-937 (ATCC CRL-1593.2, Manassas, VA, USA)
and human acute monocytic leukemia THP1 (ATCC TIB-202) cell lines were
treated for the indicated time with GM-CSF (25 ng/ml; Miltenyi Biotec,
Bergisch Gladbach, Germany) plus 1,25-dihydroxyvitamin D3 (vitD3 10 nwm;
Sigma-Aldrich, Oakville, ON, Canada) or with phorbol-myristate acetate
(PMA) (80 nm for U-937 and 100 nm for THP1; Sigma-Aldrich). In some
experiments, cells were treated with 10 um of MG132 (Calbiochem, San
Diego, CA, USA) for 6-12 h. Hela cells (ATCC CCL-2) were treated for 96 h
with PMA (80 nwm). Monocytes purified from peripheral blood mononuclear
cells of seven healthy volunteers (PBMC) were selected with anti-CD14
mAb coupled to magnetic beads. Collected cells were incubated with
saturating concentration of allophycocyanin (APC)-conjugated CD14,
CD11B (Miltenyi Biotec), CD54 (Immunotools GmbH, Friesoythe, Germany)
at 4 °C for 30" and suspended in PBS/1% paraformaldehyde. Fluorescence
was measured using a FACSCalibur flow cytometer (Becton Dickinson,
Missisauga, ON, Canada) and analyzed using FlowJo software (Tree Star
Inc., Ashland, OR, USA).

Blast cells from 13 patients with acute myeloid leukemia (AML) admitted
at the Hematology Department of the ‘A. Gemelli’ Hospital (8 males and 5
females, mean age 68 years, range 40-84) were isolated from either bone
marrow or peripheral blood by density gradient centrifugation (lympho-
lyte; Cedarlane Laboratories, Burlington, ON, Canada). The purity of
leukemic cells was always higher than 98%. In one case, cryopreserved
cells were also available and used for differentiation experiments. The
study was approved by the local Institutional Review Board.
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RNA isolation and real-time-PCR analysis

Total RNA was isolated by TRIzol (Invitrogen, Beverly, MA, USA; Thermofisher
Scientific, Waltham, MA, USA), DNase-treated (Invitrogen) and quantified
with an Agilent 2100 bioanalyzer (Agilent, Santa Clara, CA, USA). cDNAs were
generated by SuperScript Il reverse transcriptase (Invitrogen) using random
hexamers or specific primers (Supplementary Table S1). Gene-specific exon—
exon boundary PCR products (TagMan gene expression assays, Applied
Biosystems, Thermofisher Scientific, MA, USA) were measured with a PE
Applied Biosystems ABI PRISM 7300 using TagMan 2X Universal Master Mix
and the TagMan Gene Expression Assays. Cytokines were quantified using
specific primers (Supplementary Table S1). Relative quantification was
performed in duplicates from two independent real times according to the
2-AACt method and normalized on GAPDH. The primers were supplied by
Applied Biosystems: GAPDH, ID Hs99999905; ADAR2, ID Hs00953730_m1
and ADAR, ID Hs00241666_m1 and were expressed in arbitrary units.

Analysis of RNA editing

A-tol/G RNA editing was detected by direct sequencing of RT-PCR products.
The editing event is given by a mixture of A+G peaks in the sequence
chromatogram, and measured calculating the ratio between the area of the
peak corresponding to G and the sum of the areas of the double peaks A+G.
Sequence analysis was performed with the software Bioedit and, for each
sample, two/three independent RT-PCR were carried out.

Cell transfection
HEK 293T cells (7x10°), showing an undetectable endogenous editing

activity, were transiently transfected using lipofectamine 2000 (Invitrogen),

with either 4 pg of EGFP-ADAR1 or EGFP-ADAR2. Human astrocytoma cell

line U118 (ATCC HTB-15), stably transfected with EGFP vector or EGFP-
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Case4 2 Case9

ADAR?2 as already reported,”® was also used. The stably ADAR1-silenced
U-937 cell line was obtained using the BLOCK-iTTM inducible Pol Il miR
RNAI Expression Vector Kit by EmGFP (Invitrogen).

Western blot analysis

The following primary antibodies were used for immunoblotting: anti-
ADAR1 (Bethyl Laboratories, Inc, Montgomery, TX, USA), anti-ADAR2
(Sigma-Aldrich), anti-p21 and anti-GFP (Santa Cruz Biotecnology, Santa
Cruz, CA, USA), anti-B-catenin (Cell Signaling Technology, Beverly, MA,
USA). Secondary antibodies for chemiluminescence were: anti-mouse or
anti-rabbit IgG, HRP-linked Abs (GE Healthcare Life Sciences, Salt Lake city,
UT, USA). Western blot assays were analyzed using the Pierce ECL system
(Thermo Scientific). Protein levels were normalized for GAPDH using
ImagelJ version 1.45 software.

Strand-oriented RNA sequencing

Cytoplasmic rRNA removal was performed for each total RNA sample using
the Ribo-Zero rRNA Removal Kit (Epicentre, Madison, WI, USA). The
stranded-oriented RNA-seq library was prepared using the TruSeq
Stranded Total RNA Sample Prep Kit (Illumina, San Diego, CA, USA). Briefly,
each RNA was chemically fragmented before the random priming
reverse transcription reaction for first strand cDNA generation. The
fragmentation step resulted in a RNA-seq library including inserts ranging
in size ~100-400 bp. During the second strand synthesis, deoxyuridine
triphosphate (dUTP) was incorporated in place of deoxythymidine
triphosphate (dTTP), thus preventing amplification of this strand during
the subsequent PCR step and retaining strand information. cDNA libraries
were sequenced on the lllumina Next Seq 500 platform. Paired-end reads
of 100 nt were generated for each fragment.
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Figure 1.

Correlation of editing and ADART RNA expression in primary AML blasts. (a) Variation in the expression of ADART mRNA in blasts

from 13 AML cases represented as fold increase compared to U-937 cells. (b) Percentage of the editing observed in AZIN1 transcripts (c)
Correlation index between ADART mRNA expression and the editing of AZIN1 (r=0.775). The French-American-British classification (FAB)

subtype for each case is reported. NC, not classified.
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RNA-seq alignment and gene expression analysis

RNA-seq reads in FASTQ format were inspected using FASTQC program
(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Adapters and
low-quality regions (Phred cutoff of 20) were trimmed using TrimGalore
(http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/), exclud-
ing reads with final length < 50 bases. Cleaned reads were subsequently
aligned onto the complete GRCh37 human genome by means of GSNAP,?'
providing a list of exon—exon junctions from Ensembl, UCSC and RefSeq
databases. Unique and concordant alignments in SAM format were
converted in the binary BAM format by means of SAMtools.?? Transcrip-
tome quantification and differential expression was performed using
Cufflinks?> and CuffDiff2"*" 24 software through the RAP web-service
(https://bicinformatics.cineca.it/rap/).%

To identify sets of genes that are both strongly correlated to expression
data and functionally related to their gene ontology (GO) annotations, we
used the GO-PCA (principal component analysis) method (PMID:
26575370). In brief, it adopts a two-step approach in which PCA is
performed first. Then, each principal component is tested for whether it is
driven by functionally related genes (in the form of gene ontology
annotations).

RNA editing candidate gene analysis

RNA editing candidates were detected using REDItools.?® The Alu editing
index (AEIl), the weighted average editing level across all expressed Alu
sequences, was calculated using custom scripts according to the
methodology described in Bazak et al.>’ RNA editing in recoding sites
was assessed using REDItools and providing a list of 2955 known positions
from REDIportal database®® in which RNA editing causes amino-acid
change. This initial list was filtered in order to include only RNA editing

b

DS %0

ADAR1

positions supported by RNA-seq reads in all replicates. In addition, we
required at least a replicate per sample with a minimum coverage of 10
reads. For each sample, we calculated the average editing level and
selected only positions in which the RNA editing difference between
sample at 0 h and sample at 96 h was higher than 4%. The selection of
recoding editing sites was performed using custom scripts.

Statistical analysis

Results are expressed as mean and standard error (+s.e.m.) from at least
three independent experiments. Statistical significance (P-values) of
differences between mean or median values was evaluated using the
Student’s t-test, the Mann-Whitney U-test or Kruskal-Wallis one-way
analysis, whenever indicated, using GraphPad Prism.

Data availability

RNA-seq data have been submitted to SRA database under the accession
SRP103305 (BioProject: PRINA381911).

RESULTS

Analysis of ADAR expression and activity in primary myeloid
leukemia cells

It is generally acknowledged that ADAR1 plays an important role
in the maintenance of self renewing progenitor leukemia cells.
However, very little is known about the activity of ADAR enzymes
in primary AML blasts. Here we analyzed the mRNA expression
and activity of ADART in AML blasts obtained from 13 patients. Of
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Figure 2.

PMA treatment in U-937 cells induces the expression of both ADAR1 and ADAR2. Total RNA extracted from triplicates of U-937 cells,

treated with PMA (80 nm) for 48 or 96 h, underwent RNA-seq analysis. (a) RNA expression level of selected genes belonging to the
inflammatory/differentiation pathways (triplicates). (b) ADAR1 and ADAR2 expression (FPKM, triplicates). (c) One representative of three
western blots of ADAR1, ADAR2 and p21 in PMA-treated U-937 cells. *P < 0.01; **P < 0.001. FPKM, fragments per kilobase of exon per million

fragments mapped.
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Figure 3.

The expression of ADAR2 in both U-937 and THP1 cells is induced by PMA and downmodulated through the ubiquitin-proteasome

pathway. (a) Analysis of the expression of CD11B, CD14 and CD54 monocyte/macrophage differentiation markers as detected by specific
antibodies in undifferentiated and PMA-treated U-937 and THP-1 cells. (b) ADAR1 and ADAR2 mRNA variation from three independent
experiments. mRNA is expressed as log,-fold increase. Below: one representative of three western blots of ADAR1, ADAR2 and p21 in
THP1 cells before and after 8 days PMA treatment. (c) One representative of two western blots of ADAR1, ADAR2 and p — catenin®® in U-937
and THP1 cells treated with MG132 (10 pg/ml) for the indicated times. *P < 0.05.

note, ADART mRNA was found to be expressed (from 0.73- to 3.77-
fold compared to U-937 cells) in primary blasts, regardless of AML
subtype (Figure 1a). In contrast, ADAR2 mRNA was barely
detectable in blasts (data not shown). We then analyzed the
editing levels at one well-known target of ADAR1, AZIN1,%° in the
13 blast cells as well as in U-937 myelomonocytic cell line and
found a variable percentage (Figure 1b) of the editing at
adenosine recoding the residue 367 (serine to glycine) of AZINT1.
Of note, editing at this site strongly correlated (r=0.775) with
ADART mRNA expression (Figure 1c).

ADARs expression during myeloid cell differentiation

We therefore asked whether the expression and the activity of the
ADARs were modified during differentiation. Triplicates of U-937
cells were differentiated by PMA3°>2? and totRNA extracted at 0,
48 and 96 h post induction for molecular analysis and deep-
sequencing profiles. A time course of the U-937 cell morphology
changes and ADART expression is shown in Supplementary
Figure S1. Time points at 0, 48 (time at which ADAR1 is detectable)
and 96 h (time at which ADAR1 expression is the highest) have
been chosen to perform RNA-seq analysis.

RNA signature of the cells (Supplementary Figure S2A) dis-
played upregulation of inflammatory pathway on cell differentia-
tion (CCL1, CCL20, CCL2, CCL3, IL8 and CCL4) (Figure 2a), which
has been also confirmed by gPCR (Supplementary Figure S3),
CDKN1A (p21), a well-known marker for myeloid cell maturation,

was also upregulated as confirmed by protein expression
(Figure 2a). GO-PCA analysis (PMID: 26575370) based on an
unsupervised method to explore gene expression data using prior
knowledge in the form of GO annotations, revealed 46 specific
signatures, consisting of small set of genes that were strongly
correlated by their expression as well as functionally related by GO
annotations. All 46 signatures (P < 0.001) contained between 5
and 23 genes and were mainly related to inflammation and cell
cycle (Supplementary Figure S2B and Supplementary Table S2).

Interestingly, we observed a trend of progressive increase of
ADAR1 mRNA during differentiation, whereas ADAR2 mRNA was
expressed ~10 times less compared to ADAR1 with a further
decrease during differentiation (Figure 2b). Accordingly, the
expression of the two ADAR1 isoforms (p150 and p110) were
both increased during differentiation, whereas ADAR2 had an
opposite trend undergoing a strong increase at 96h post
differentiation, time at which the cells acquired a macrophage-
like phenotype (Supplementary Figure S1 and Figure 2c).

An additional myeloid cell line, THP1, was also PMA treated.
After 8 days post treatment, these cells acquired a mature
phenotype (Supplementary Figure S1) expressing CD11B, CD14
and CD54 at a level comparable to that observed in U-937 cells
(Figure 3a). However, differently from U-937, THP1 increased
ADAR2 mRNA during differentiation, whereas ADAR1 and ADAR2
proteins showed an expression profile similar to that observed in
the U-937 (Figure 3b).
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Figure 4. Analysis of the editing index in triplicates of U-937 cells
untreated or PMA treated for 48 and 96 h. The AEl indicating the
editing activity of ADARs was calculated in triplicates of U-937 cells
untreated and PMA treated at 48 and 96 h, across all expressed Alu
sequences. The statistical significance has been calculated by
Mann-Whitney test correcting P-values with Benjamini-Hochberg
procedure. Corrected P-values for each comparison are as follows:
U937-UNT versus U937-48h, P=0.2627; U937-UNT versus U937-96h,
P =0.003; U937-48h versus U937-96h, P=0.001. **P < 0.01.

To investigate why ADAR2 protein increases at the later stage
of cell differentiation independently of its mRNA, we analyzed
whether posttranslational mechanisms could play a role in these
cells. Previous studies using mouse embryo fibroblasts had shown
that ADAR2 can undergo proteasome degradation.>* We there-
fore treated U-937 and THP1 cells with the proteasome inhibitor
MG132 (Figure 3c). Interestingly, while ADAR1 level increased
slightly in the U-937 cells and not at all in the THP1, ADAR2
progressively accumulated in both cell lines (Figure 3c).

Altogether, these results indicate that both ADAR enzymes are
expressed during leukemia cell differentiation, with ADAR1 being
present and active from the proliferative to the differentiated
stage and with ADAR2 protein appearing throughout
differentiation.

RNA editing signature during (PMA)-cell differentiation

Global A-to-l RNA editing was evaluated through the AEIl as it
represents the weighted average editing level across all
expressed Alu sequences.>®> We observed that, in U-937 cells,
the AEl value significantly increased (P < 0.01) from 48 to 96 h
(Figure 4 and Supplementary Figure S4). The analysis of 171 A-to-|
editing sites resulting in amino-acid substitutions, filtered from an
initial pool of 2955 recoding positions from REDIportal
database,”® revealed variation in RNA editing levels along the
differentiation process (Supplementary Table S3). Five recoding
candidates, showing major variation in editing (AZIN1, CCNI,
COG3, RHOA and SRP9), and two additional positions in the 3'UTR
of RAB2B (selected for being over edited in the final step) and in
the intronic region of PDE8A (known to be a target of ADAR2 in
other cellular systems),**3” were experimentally verified (Table 1
and Supplementary Figure S7). In particular, the editing of AZIN1,
edited by ADAR1 at amino-acid position 367,%° increased during
differentiation (Table 1) up to ~38% in U-937 and ~24% in THP1.
Other genes, such as COG3, CCNI, RAB2B and RHOA, the last at
four amino-acid positions, were also highly edited when cells
were fully differentiated (Table 1). Of note, due to editing, RHOA
displayed two consecutive recoding sites (Y175C and R176G) in
exon 4, suggesting a major functional outcome.

Overall, these data, together with the analysis of the AE,
indicated that the editing activity of the ADARs increases during
myeloid cell differentiation.

Leukemia (2017) 2824-2832

RNA editing levels (%) in seven substrates on PMA or vitD3+GM-CSF treatment in U-937 and THP1 cells and monocytes

Table 1.

Monocytes

THP-1

U-937

U-937

aa position A->A

Position

ADARs edited sites (% of editing +s.e.m.) Chr

PMA (96 h) VitD3+GM-CSF UNT PMA (8 days) VitD3+GM-CSF

UNT

PMA (96 h)

Predicted

UNT

Experimental

35.4 (+6.3)
50.7 (+4.8)
23.0 (+3.2)
70.3 (+4.9)
39.0 (+3.1)
17.8 (£2.5)
18.7 (+1.9)
18.3 (+4.1)
27.5 (+5.5)
37.3 (+5.0)
82.2 (+4.1)

2

1.1
0.9
ND
ND
399
421
0.3
30.8
ND
ND

31.

23.7
67.1
344
77.2
26.0
50.3
48.9
45.0
50.1
51.2
67.4

5.2
13.0
0
54.1
23.2
29.3
16.6
11.9
221
214
23.8

ND
ND
37.2
274
321
22
ND
ND

33.2
21
223

9.3 (+1.0) 39.3 (+9.8

78.2 (£2.0) 77.7 (£1.2
1.8 (x1.6) 52.5 (1.5

13.7 (+1.8) 38.2 (+9.8
27.5 (£6.5) 41.3 (£3.0

14.5 (+3.5) 26.5 (+8.5
229 (£2.1) 284 (+4.6

33.3 (+0.7) 36.7 (+0.6
35.5 (+5.5) 47.0 (£5.0
34.8 (+1.2) 63.5 (+4.2
12.6 (£2.8) 29.2 (+9.8

33.0 (£12.7)
46.7 (+8.8)
ND

73.7 (£1.2)
+10.1) 38.0 (+4.6)

29.0 (£3.5)
37.1 (£3.0)
39.3 (+£1.8)
23.0 (£3.8)
52.5 (+5.5)

.5) 46.3 (+1.3)

+0.3
+3.0
+3.4
+5.0
+4.2
+14
+2.6)
D

0 (0.6
N

I->M 69.3
12.2

17.0
7

S->G 6.7
S->G 31.1
R->G 464
Y->C 30.1
S->G 29.7
K->R 24.2

l->V

367
635
75
64
75
176
175
171
162

103841636
46090371
77979680

225974614

225974645
49398382
49398384
49398394
49398423
21928501
85639918

8
4
1
3
4
15

AZIN1
COG3
CCNI
SRP9
RHOA
RAB2B
PDESA

Abbreviations: ADAR1, adenosine deaminase acting on RNA1; Chr, chromosome; ND, not determined; PMA, phorbol-myristate acetate. UNT, untreated; Vitd3+GM-CSF, vitamin D3+granulocyte macrophage-

colony stimulating factor.
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Figure 5.

PMA treatment in AML cells induces the expression of ADAR2. AML blasts (M5) were exposed for 96 h to PMA. (a) Differentiation

markers at baseline and after 96 h treatment. (b) RNA and protein expression of ADART and ADAR2. mRNA is expressed as log,-fold increase

() Variation in the percentage of editing in four selected targets.

To verify that the increased activity of the ADARs was indeed a
marker of differentiation, RNA editing was also analyzed both in
cell lines differentiated by vitD3+GM-CSF and in peripheral blood
monocytes, which represent the physiological final stage of
myeloid cells maturation.

Treatment for 96 h of vitD3+GM-CSF-induced maturation of both
U-937 and THP1, which acquired an intermediate phenotype
between untreated and PMA-differentiated cells (Supplementary
Figure S5). Specifically, CD14 was expressed at higher level
indicating a differentiation toward monocyte rather than macro-
phage phenotype (Supplementary Figure S5A). Cells were still
progressing through the cell cycle (Supplementary Figure S5B) and
p21 was only moderately upregulated (Supplementary Figure S5C).
The expression of both ADAR proteins was increased
(Supplementary Figure S5C), concomitantly with the editing level
of the selected substrates (Table 1 and Supplementary Figure S8).
Finally, we investigated ADAR1 expression in AML cells of
monoblastic subtype M5 during in vitro exposure to PMA (case 12
in Figure 1). Cells acquired a cell morphology reminiscent of that of
differentiated U-937 cells (not shown), with a similar pattern of

expression of cell surface CD11B, CD14 and CD54 (Figure 5a). In
contrast to what was observed in U-937, in primary AML cells, PMA
exposure did induce ADAR2 (both mRNA and protein) but not
ADAR1 (Figure 5b). Consistently, editing at AZIN1 and CCNI sites,
mainly edited by ADAR1, did not increase on PMA exposure,
whereas SRP9 (aa position 64) and COG3 did, suggesting that they
could be targeted by ADAR2 (see below) (Figure 5c).

To further confirm that what we have observed was specific for
myeloid cell differentiation, we repeated the experiments using
Hela cells treated or not with PMA: As shown in Supplementary
Figure S6, ADART is not detectable in our conditions, whereas
ADAR2 is present at time 0 and it does not increase significantly at
96 h. IL-1B is not produced at any time and p21 is not upmodulated.
In accordance, the editing level of AZINT and CCNI is maintained
low, whereas the editing at COG3 and SRP9 sites remained high.

Of note, monocytes showed RNA editing (as tested at specific
sites) at a level comparable to that observed in the PMA-finally
differentiated cell lines (Table 1).

Overall, these observations indicated that an increased activity
of the ADARs characterizes mature myeloid cells.
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Figure 6. ADAR1 silencing in PMA-treated U-937 cells does not influence differentiation or ADAR2 activity. (a) Expression of the differentiation
markers CD11B, CD14 and CD54 in the two si-ADAR1 clones undergoing PMA treatment. (b) Variation of ADART mRNA expressed as log,-fold
increase in the scramble (scr) and in the two transfected U-937 clones. (c) Variation in ADAR1, ADAR2 and GFP protein expression in the

scramble and in the two si-ADART clones.

Table 2. Modification in the level of RNA editing of seven substrates on PMA treatment in si-ADAR1 U-937 cells and controls

Edited transcript U-937 scr U-937 si-ADAR1 HEK U118

UNT PMA (96 h) UNT PMA (96 h) pEGFP ADART ADAR2 wT ADAR2
1° clone 2° clone 1° clone 2° clone

AZIN1 13% 30% 9% 10% 12% 15% ND ND ND ND ND
CCNI 13% 27% 11% 13% 13% 12% 3% 60% 22% 11% 10%
RAB2B 21% 55% 27% ND 11% ND 10% 35% 25% 11% 11%
SRP9 (225974614) 79% 82% 82% ND 81% ND 52% 51% 68% 44% 73%
SRP9 (225974645) 21% 26% 33% ND 24% ND 13% 11% 14% 14% 18%
COG3 16% 57% 27% 24% 44% 40% 13% 17% 49% 21% 75%
PDE8AT1 39% 66% 24% 29% 37% 50% ND ND ND 19% 70%
RHOA (49398382) 16% 64% 14% ND 25% ND 16% 15% 18% 40% 58%
RHOA (49398384) 24% 50% 0% ND 35% ND 16% 16% 16% 40% 53%
RHOA (49398394) 39% 46% 0% ND 36% ND 14% 14% 23% 29% 88%
RHOA (49398423) 15% 40% 0% ND 22% ND 13% 19% 22% 17% 44%
Abbreviations: ADAR1, adenosine deaminase acting on RNA1; HEK, human embryonic kidney cells 293T; ND, not determined; pEGFp, plasmid enhanced green
fluorescent protein; PMA, phorbol-myristate acetate. UNT, untreated.

Silencing of ADAR1 during differentiation abrogates the editing of
specific substrates

We wanted to further dissect the activity of the two ADARs in our
system. Considering that ADAR1 expression anticipates that of
ADAR2, we attempted to stably silence ADAR1 in U-937 cells,
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using silencing constructs that carry both ADAR1-shRNA and
eGFP under the cytomegalovirus (CMV) promoter, as it has been
reported that PMA is able to induce specifically this promoter.®
The use of PMA has therefore the advantage to block
simultaneously the cell cycle, ADART and cell death through NF-



KB and one of its targets, BCL2A1,3° a member of the BCL-2 family
whose expression has been found highly increased in the RNA-seq
analysis of the PMA-treated U-937 (not shown). We observed that
ADART1 silencing led to massive cell death in our system. However,
after many attempts, we finally managed to isolate two U-937
clones (si-clones) stably expressing the ADART-shRNA GFP, but
still producing a detectable amount of ADAR1. The phenotype of
the PMA-differentiated si-ADAR1 clones was similar to the one
observed in U-937 controls, as verified by CD11B, CD14 and CD54
expression (Figure 6a). On differentiation, p21, ADAR2 and eGFP
were induced. As expected, in PMA-treated scr-U-937 cells, ADAR1
increased at both RNA (Figure 6b) and protein level (Figure 6c¢),
while it appeared less expressed in the two PMA-treated silenced
clones, due to the PMA-mediated boost of the ADAR1-shRNA.
Compared with the control (U-937 scr), on PMA treatment the two
si-clones did not increase the editing at some genes (AZIN1, CCNI
and RAB2B) (Supplementary Figure S9 and Table 2), indicating that
these were specific targets of ADART. To verify the contribution of
ADAR2, we used HEK cells overexpressing either ADAR1 or ADAR2
and U118 cells overexpressing ADAR2.%° This allowed to infer that
the remaining genes were partially or exclusively targeted by
ADAR2, that is, COG3.

We concluded that during monocyte/macrophage differentia-
tion, both ADARs increase their activity and can independently
contribute to the editosoma.

DISCUSSION

It is not generally clear whether ADAR1T and ADAR2 play the same
or different roles in human cells. Our study focused on the role of
ADAR enzymes in human myeloid leukemia cells, finding that they
are both overexpressed in cells undergoing differentiation to
monocyte/macrophage lineage. We found, however, that the two
ADARs are differently regulated during myeloid differentiation:
while ADART is progressively modulated during maturation,
ADAR2 undergoes a sharp increase during differentiation.

Of note, ADAR1 has been found to be required for normal
hematopoiesis and for promoting malignant progenitor repro-
gramming in chronic myeloid leukemia.*’™** Consistently, we
observed that myeloid leukemia primary blasts from 13 AML
patients, as well as two myeloid leukemia cell lines, express a
detectable, although variable, amount of ADAR1. Moreover, we
noticed that U-937 cells, stably expressing an ADAR1-silencing
vector, were also retaining a small amount of ADAR1, indicating
that some activity of ADART is necessary for blasts maintenance.
Whether this is due to its editing activity or, most likely, to other
ADAR?1 functions* remains to be established. However, when the
ADAR1-silenced U-937 cells were PMA-differentiated in vitro,
ADAR1 expression failed to increase without this interfering with
the course of cell differentiation, indicating a lack of ADAR1
involvement within this process. This finding is further confirmed
by the lack of increase in ADART expression, which remained
stable in leukemia blasts undergoing in vitro PMA differentiation.
On the contrary, ADAR2 also in this case was strongly upregulated,
as already observed in the two myeloid cell lines. The above
observation indicates that, differently from ADAR1, ADAR2 is not
necessary or even detrimental for blasts homeostasis, as
suggested by the observation that ADAR2 is eliminated through
the ubiquitin—proteasome degradation pathway. However, ADAR2
might play some role afterwards when cells stop duplicating and
proceed through differentiation.

As for the editing activity, most of the A-to-l editing sites in the
literature were identified by computational analysis of sequence
data without experimental validation.”® By deep-sequencing
analysis, we observed that there was a correlation between the
expression of ADARs and the global editing in U-937 cells. When
some targets, selected for being highly edited at the end of PMA
treatment, were experimentally verified, we observed that the
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increase in the expression of ADAR1 in both U-937 and THP1 cell
lines correlated with the editing activity on specific ADAR1 targets,
such as AZIN1. This observation was corroborated by the strong
correlation observed between AZIN1 editing and ADART mRNA
expression in blasts from AML patients. However, hampering of its
upregulation and activity does not appear to impact myeloid cell
differentiation.

The increment in ADAR2 expression along differentiation
correlates with the global editing increase. We then searched for
specific targets for ADAR2 in the recoding of the selected targets.
Although we could not rely on ADAR2-silenced cells, nevertheless,
using alternative approaches, we observed that, while AZINT and
CCNI are specific targets for ADART, COG3 and RHOA, the latter at
least at aa position 171, are edited by ADAR2. As a matter of fact,
we report here that the activity of the two ADARs on these specific
targets can be independent of each other. Of note, RHOA is highly
edited, and it has been reported that another protein of the same
pathway, RhoGTPase activating protein (ARHGAP26), is also
regulated through ADAR editing, suggesting that this pathway
can be a special target of the ADARs.*” Interestingly, the edited
form of AZIN1 has been reported to concur to proliferation and
transformation in hepatocarcinoma cells.*® In myeloid cells, the
increase in AZIN1 editing mostly occurs in differentiated cells.

Most intriguing, ADAR2 is only detectable in cells at more
mature stage of differentiation. It has been demonstrated that
ADAR?2 is posttranscriptionally regulated by the E3 ubiquitin ligase
WWP2, whose action is counteracted by the phosphorylation-
dependent prolyl-isomerase PINT, a positive regulator required for
the nuclear localization and stability of ADAR23* In both U-937
and THP1 cells, proteasome inhibition revealed that the absence
of ADAR2 in proliferating leukemia cell lines is due to its
catabolism. We investigated whether PIN1T and WWP2 were
differently expressed in U-937 undergoing PMA treatment and
found that WWP2 mRNA was virtually absent ( < 10 FPKM) at any
time, whereas PINT was 10 times more abundant without
significant variation during the time course. It is still possible,
although unlikely, that the same degradation pathway is active in
our system, or that another E3 ubiquitin ligase is responsible for
the catabolism of ADAR2 in these cells. This aspect needs further
investigation.

In summary, we show here for the first time that ADARs
expression and activity are modulated during myeloid cell
differentiation. This observation is also supported by the finding
that peripheral blood monocytes show editing at selected
recoding targets at level similar to that observed in in vitro
differentiated leukemic cells. Furthermore, these observations
candidate ADAR2 as a novel marker for myeloid blasts cell
differentiation.
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