164 research outputs found

    Соотношение путей углеводного синтеза при введении свободных и фосфорилированных сахаров в листья картофеля

    Get PDF
    Показано, что регуляция путей биосинтеза углеводов может осуществляться через изменение концентрации промежуточных и конечных метаболитов. При этом одним из факторов, регулирующих направленность синтеза углеводов, является активность АДФГ- и УДФГ-пирофосфорилаз. По-видимому, регуляция работы этих ферментов может осуществляться низкомолекулярными метаболитами по принципу обратной связи

    Multi-domain active sound control and noise shielding

    Get PDF
    This paper describes an active sound control methodology based on difference potentials. The main feature of this methodology is its ability to automatically preserve “wanted” sound within a domain while canceling “unwanted” noise from outside the domain. This method of preservation of the wanted sounds by active shielding control is demonstrated with various broadband and realistic sound sources such as human voice and music in multiple domains in a one-dimensional enclosure. Unlike many other conventional active control methods, the proposed approach does not require the explicit characterization of the wanted sound to be preserved. The controls are designed based on the measurements of the total field on the boundaries of the shielded domain only, which is allowed to be multiply connected. The method is tested in a variety of experimental cases. The typical attenuation of the unwanted noise is found to be about 20 dB over a large area of the shielded domain and the original wanted sound field is preserved with errors of around 1 dB and below through a broad frequency range up to 1 kHz. © 2011 Acoustical Society of Americ

    Prednisolone inhibits hyperosmolarity-induced expression of MCP-1 via NF-κB in peritoneal mesothelial cells

    Get PDF
    The mechanism of peritoneal fibrosis in patients on continuous ambulatory peritoneal dialysis (CAPD) is poorly elucidated. We investigated the cellular mechanism of high-glucose-induced expression of monocyte chemoattractant protein-1 (MCP-1), which is important in recruiting monocytes into the peritoneum and progression of peritoneal fibrosis, and examined the inhibitory mechanism of glucocorticoids. Rat peritoneal mesothelial cells were cultured in high-glucose-containing medium and then analyzed for phosphorylation levels of p42/44 and p38 mitogen-activated protein (MAP) kinases (MAPK), MAPK or extracellular signal-regulated kinase kinase (MEK)1/2, c-Jun N-terminal kinase (JNK)1/2, and protein kinase C (PKC) by Western blotting. Expression of MCP-1 was examined by reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. DNA-binding activity of nuclear factor (NF)-κB was measured by electrophoretic mobility shift assay. High glucose increased MCP-1 mRNA and MCP-1 protein expression. Although glucose increased phosphorylation of MEK1/2, p42/44 MAPK, p38 MAPK, JNK1/2, and PKC, and DNA-binding activity of NF-κB, its effect on MCP-1 expression was suppressed only by PKC and NF-κB inhibitors. Mannitol caused a similar increase in PKC and NF-κB activation and MCP-1 synthesis. Prednisolone increased I-κB-α expression and inhibited glucose/mannitol-induced NF-κB DNA binding and MCP-1 expression without affecting PKC phosphorylation. The inhibitory effects of prednisolone on MCP-1 expression were reversed by mifepristone, a glucocorticoid receptor antagonist. Our results indicate that glucose induces MCP-1 mainly through hyperosmolarity by activating PKC and its downstream NF-κB, and that such effect was inhibited by prednisolone, suggesting the efficacy of prednisolone in preventing peritoneal fibrosis in patients on CAPD

    Sequencing and Analysis of Approximately 40 000 Soybean cDNA Clones from a Full-Length-Enriched cDNA Library

    Get PDF
    A large collection of full-length cDNAs is essential for the correct annotation of genomic sequences and for the functional analysis of genes and their products. We obtained a total of 39 936 soybean cDNA clones (GMFL01 and GMFL02 clone sets) in a full-length-enriched cDNA library which was constructed from soybean plants that were grown under various developmental and environmental conditions. Sequencing from 5′ and 3′ ends of the clones generated 68 661 expressed sequence tags (ESTs). The EST sequences were clustered into 22 674 scaffolds involving 2580 full-length sequences. In addition, we sequenced 4712 full-length cDNAs. After removing overlaps, we obtained 6570 new full-length sequences of soybean cDNAs so far. Our data indicated that 87.7% of the soybean cDNA clones contain complete coding sequences in addition to 5′- and 3′-untranslated regions. All of the obtained data confirmed that our collection of soybean full-length cDNAs covers a wide variety of genes. Comparative analysis between the derived sequences from soybean and Arabidopsis, rice or other legumes data revealed that some specific genes were involved in our collection and a large part of them could be annotated to unknown functions. A large set of soybean full-length cDNA clones reported in this study will serve as a useful resource for gene discovery from soybean and will also aid a precise annotation of the soybean genome

    The Induction of MicroRNA Targeting IRS-1 Is Involved in the Development of Insulin Resistance under Conditions of Mitochondrial Dysfunction in Hepatocytes

    Get PDF
    BACKGROUND: Mitochondrial dysfunction induces insulin resistance in myocytes via a reduction of insulin receptor substrate-1 (IRS-1) expression. However, the effect of mitochondrial dysfunction on insulin sensitivity is not understood well in hepatocytes. Although research has implicated the translational repression of target genes by endogenous non-coding microRNAs (miRNA) in the pathogenesis of various diseases, the identity and role of the miRNAs that are involved in the development of insulin resistance also remain largely unknown. METHODOLOGY: To determine whether mitochondrial dysfunction induced by genetic or metabolic inhibition causes insulin resistance in hepatocytes, we analyzed the expression and insulin-stimulated phosphorylation of insulin signaling intermediates in SK-Hep1 hepatocytes. We used qRT-PCR to measure cellular levels of selected miRNAs that are thought to target IRS-1 3' untranslated regions (3'UTR). Using overexpression of miR-126, we determined whether IRS-1-targeting miRNA causes insulin resistance in hepatocytes. PRINCIPAL FINDINGS: Mitochondrial dysfunction resulting from genetic (mitochondrial DNA depletion) or metabolic inhibition (Rotenone or Antimycin A) induced insulin resistance in hepatocytes via a reduction in the expression of IRS-1 protein. In addition, we observed a significant up-regulation of several miRNAs presumed to target IRS-1 3'UTR in hepatocytes with mitochondrial dysfunction. Using reporter gene assay we confirmed that miR-126 directly targeted to IRS-1 3'UTR. Furthermore, the overexpression of miR-126 in hepatocytes caused a substantial reduction in IRS-1 protein expression, and a consequent impairment in insulin signaling. CONCLUSIONS/SIGNIFICANCE: We demonstrated that miR-126 was actively involved in the development of insulin resistance induced by mitochondrial dysfunction. These data provide novel insights into the molecular basis of insulin resistance, and implicate miRNA in the development of metabolic disease

    Involvement of Girdin in the Determination of Cell Polarity during Cell Migration

    Get PDF
    Cell migration is a critical cellular process that determines embryonic development and the progression of human diseases. Therefore, cell- or context-specific mechanisms by which multiple promigratory proteins differentially regulate cell migration must be analyzed in detail. Girdin (girders of actin filaments) (also termed GIV, Gα-interacting vesicle associated protein) is an actin-binding protein that regulates migration of various cells such as endothelial cells, smooth muscle cells, neuroblasts, and cancer cells. Here we show that Girdin regulates the establishment of cell polarity, the deregulation of which may result in the disruption of directional cell migration. We found that Girdin interacts with Par-3, a scaffolding protein that is a component of the Par protein complex that has an established role in determining cell polarity. RNA interference-mediated depletion of Girdin leads to impaired polarization of fibroblasts and mammary epithelial cells in a way similar to that observed in Par-3-depleted cells. Accordingly, the expression of Par-3 mutants unable to interact with Girdin abrogates cell polarization in fibroblasts. Further biochemical analysis suggests that Girdin is present in the Par protein complex that includes Par-3, Par-6, and atypical protein kinase C. Considering previous reports showing the role of Girdin in the directional migration of neuroblasts, network formation of endothelial cells, and cancer invasion, these data may provide a specific mechanism by which Girdin regulates cell movement in biological contexts that require directional cell movement
    corecore