1,018 research outputs found

    Fuel-cell performance of multiply-crosslinked polymer electrolyte membranes prepared by two-step radiation technique

    Get PDF
    A multiply-crosslinked polymer electrolyte membrane was prepared by the radiation-induced co-grafting of styrene and a bis(vinyl phenyl)ethane (BVPE) crosslinker into a radiation-crosslinked polytetrafluoroethylene (cPTFE) film. We then investigated its H2/O2 fuel-cell performance at 60 and 80ºC in terms of the effect of radiation and chemical crosslinking. At 60ºC, all the membranes initially exhibited similar performance, but only the cPTFE-based membranes were durable at 80ºC, indicating the necessity of radiation crosslinking in the PTFE main chains. Importantly, cell performance of the multiply-crosslinked membrane was found high enough to reach that of a Nafion112 membrane. This is probably because the BVPE crosslinks in the graft component improved the membrane-electrode interface in addition to membrane durability. After severe OCV hold tests at 80 and 95ºC, the performance deteriorated, while no significant change was observed in ohmic resistivity. Accordingly, our membranes seemed so chemically stable that an influence on overall performance loss could be negligible

    Denaturation of Circular DNA: Supercoil Mechanism

    Full text link
    The denaturation transition which takes place in circular DNA is analyzed by extending the Poland-Scheraga model to include the winding degrees of freedom. We consider the case of a homopolymer whereby the winding number of the double stranded helix, released by a loop denaturation, is absorbed by \emph{supercoils}. We find that as in the case of linear DNA, the order of the transition is determined by the loop exponent cc. However the first order transition displayed by the PS model for c>2c>2 in linear DNA is replaced by a continuous transition with arbitrarily high order as cc approaches 2, while the second-order transition found in the linear case in the regime 1<c21<c\le2 disappears. In addition, our analysis reveals that melting under fixed linking number is a \emph{condensation transition}, where the condensate is a macroscopic loop which appears above the critical temperature.Comment: 9 pages, 4 figure

    Immobilization of cholesterol oxidase in a conducting copolymer of thiophene-3-yl acetic acid cholesteryl ester with pyrrole

    Get PDF
    Cholesterol oxidase has been immobilized in conducting copolymers of thiophene-3-yl acetic acid cholesteryl ester with pyrrole (CM/PPy) and polypyrrole (PPy) via electropolymerization. p-Toluene sulphonic acid was used as the supporting electrolyte. Kinetic parameters (V-max and K-m) and operational stability of enzyme electrodes were investigated. Surface morphology of the films was examined by scanning electron microscope

    Immobilization of catalase via adsorption into natural and modified active carbon obtained from walnut in various methods

    Get PDF
    In the present work, the immobilization of catalase into natural active carbon and active carbon modified by hydrochloric acid was carried out. In the experimental section, the effects of pH, ionic strength andreaction temperature were chosen as parameters, with experiments performed in batch system. For the optimization of immobilization procedure, values of kinetic parameters were evaluated. It was observedthat storage and operational stabilities of the enzyme increased with immobilization. The results obtained from experiments showed that active carbon is a valuable support for the adsorption of enzymes

    Analytical Solution of a Stochastic Content Based Network Model

    Full text link
    We define and completely solve a content-based directed network whose nodes consist of random words and an adjacency rule involving perfect or approximate matches, for an alphabet with an arbitrary number of letters. The analytic expression for the out-degree distribution shows a crossover from a leading power law behavior to a log-periodic regime bounded by a different power law decay. The leading exponents in the two regions have a weak dependence on the mean word length, and an even weaker dependence on the alphabet size. The in-degree distribution, on the other hand, is much narrower and does not show scaling behavior. The results might be of interest for understanding the emergence of genomic interaction networks, which rely, to a large extent, on mechanisms based on sequence matching, and exhibit similar global features to those found here.Comment: 13 pages, 5 figures. Rewrote conclusions regarding the relevance to gene regulation networks, fixed minor errors and replaced fig. 4. Main body of paper (model and calculations) remains unchanged. Submitted for publicatio

    Good guide, bad guide:spacer sequence-dependent cleavage efficiency of Cas12a

    Get PDF
    Genome editing has recently made a revolutionary development with the introduction of the CRISPR–Cas technology. The programmable CRISPR-associated Cas9 and Cas12a nucleases generate specific dsDNA breaks in the genome, after which host DNA-repair mechanisms can be manipulated to implement the desired editing. Despite this spectacular progress, the efficiency of Cas9/Cas12a-based engineering can still be improved. Here, we address the variation in guide-dependent efficiency of Cas12a, and set out to reveal the molecular basis of this phenomenon. We established a sensitive and robust in vivo targeting assay based on loss of a target plasmid encoding the red fluorescent protein (mRFP). Our results suggest that folding of both the precursor guide (pre-crRNA) and the mature guide (crRNA) have a major influence on Cas12a activity. Especially, base pairing of the direct repeat, other than with itself, was found to be detrimental to the activity of Cas12a. Furthermore, we describe different approaches to minimize base-pairing interactions between the direct repeat and the variable part of the guide. We show that design of the 3′ end of the guide, which is not involved in target strand base pairing, may result in substantial improvement of the guide's targeting potential and hence of its genome editing efficiency

    Shape memory behavior in Fe 3 Al-modeling and experiments

    Get PDF
    The Fe 3 Al alloy with D0 3 structure exhibits large recoverable strains due to reversible slips. Tension and compression experiments were conducted on single crystals of Fe 3 Al, and the onset of slip in forward and reverse directions were obtained utilizing high-resolution digital image correlation technique. The back stress provides the driving force for reversal of deformation upon unloading, resulting in a superelastic phenomenon as in shape memory alloys. Using density functional theory simulations, we obtain the energy barriers (GSFE -generalized stacking fault energy) for {1 1 0}〈1 1 1〉 and {1 1 2} 〈1 1 1〉 slips in D0 3 Fe 3 Al and the elastic moduli tensor, and undertake anisotropic continuum calculations to obtain the back stress and the frictional stress responsible for reversible slip. We compare the theoretically obtained slip stress magnitudes (friction and back stress) with the experimental measurements disclosing excellent agreement

    Delocalization Transition of a Rough Adsorption-Reaction Interface

    Full text link
    We introduce a new kinetic interface model suitable for simulating adsorption-reaction processes which take place preferentially at surface defects such as steps and vacancies. As the average interface velocity is taken to zero, the self- affine interface with Kardar-Parisi-Zhang like scaling behaviour undergoes a delocalization transition with critical exponents that fall into a novel universality class. As the critical point is approached, the interface becomes a multi-valued, multiply connected self-similar fractal set. The scaling behaviour and critical exponents of the relevant correlation functions are determined from Monte Carlo simulations and scaling arguments.Comment: 4 pages with 6 figures, new comment

    Discovery and genotyping of novel sequence insertions in many sequenced individuals

    Get PDF
    Motivation: Despite recent advances in algorithms design to characterize structural variation using high-throughput short read sequencing (HTS) data, characterization of novel sequence insertions longer than the average read length remains a challenging task. This is mainly due to both computational difficulties and the complexities imposed by genomic repeats in generating reliable assemblies to accurately detect both the sequence content and the exact location of such insertions. Additionally, de novo genome assembly algorithms typically require a very high depth of coverage, which may be a limiting factor for most genome studies. Therefore, characterization of novel sequence insertions is not a routine part of most sequencing projects. There are only a handful of algorithms that are specifically developed for novel sequence insertion discovery that can bypass the need for the whole genome de novo assembly. Still, most such algorithms rely on high depth of coverage, and to our knowledge there is only one method (PopIns) that can use multi-sample data to "collectively" obtain a very high coverage dataset to accurately find insertions common in a given population. Result: Here, we present Pamir, a new algorithm to efficiently and accurately discover and genotype novel sequence insertions using either single or multiple genome sequencing datasets. Pamir is able to detect breakpoint locations of the insertions and calculate their zygosity (i.e. heterozygous versus homozygous) by analyzing multiple sequence signatures, matching one-end-anchored sequences to small-scale de novo assemblies of unmapped reads, and conducting strand-aware local assembly. We test the efficacy of Pamir on both simulated and real data, and demonstrate its potential use in accurate and routine identification of novel sequence insertions in genome projects. © 2017 The Author. Published by Oxford University Press. All rights reserved

    Microscope and microâ camera assessment of Schneiderian membrane perforation via transcrestal sinus floor elevation: A randomized ex vivo study

    Full text link
    ObjectiveWe sought to assess the effectiveness of using a microscope and nonâ invasive camera for assessing sinus membrane perforations during transcrestal sinus floor elevation (TSFE).Materials and methodsFive fresh human cadaver heads corresponding to eight maxillary sinuses (six bilateral and two unilateral) underwent 4 TSFEs per sinus (a total of 32 single site elevations). Each elevation was randomly assigned to receive a three or six mm membrane elevation height (MEH). A microscope and microâ camera were used to assess the sinus membrane perforation. Afterwards, radiological and clinical membrane perforation assessments were performed. The statistical analysis results are expressed using the means, standard deviations, range values of the residual ridge height (RRH), residual ridge width (RRW), sinus membrane thickness (SMT) and incidence of perforation (IoP). Generalized linear methods were used to test for the correlation of RRH and MEH to the microscope and microâ camera perforation assessments and the correlation of microscope and microâ camera assessments with the postâ operative CBCT and crestal liquid evaluation.ResultsThe cumulative percentage of IoP was 40.62%, (23.07% with 3 mm MEH, and 76.92% with 6 mm MEH, p < 0.05). The perforation assessed using either the microscope or microâ camera coincided with the postâ operative CBCT and crestal liquid assessment in 87.55% sites. No significant correlation was found between the microscope or microâ camera assessments with RRH or MEH.ConclusionApplication of a microscope and microâ camera during transcrestal sinus floor elevation may allow the detection of the integrity of the Schneiderian membrane with greater than 85% accuracy in this ex vivo model.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/149727/1/clr13453.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/149727/2/clr13453_am.pd
    corecore