10 research outputs found
The utility of B-type natriuretic peptide in the diagnosis of heart failure in the emergency department: a systematic review
<p>Abstract</p> <p>Background</p> <p>Dyspnea is a common chief complaint in the emergency department (ED); differentiating heart failure (HF) from other causes can be challenging. Brain Natriuretic Peptide (BNP) is a new diagnostic test for HF for use in dyspneic patients in the ED. The purpose of this study is to systematically review the accuracy of BNP in the emergency diagnosis of HF.</p> <p>Methods</p> <p>We searched MEDLINE (1975â2005) supplemented by reference tracking. We included studies that reported the sensitivity and specificity of BNP for diagnosing HF in ED patients with acute dyspnea. Two reviewers independently assessed study quality. We pooled sensitivities and specificities within five ranges of BNP cutoffs.</p> <p>Results</p> <p>Ten studies including 3,344 participants met inclusion criteria. Quality was variable; possible verification or selection bias was common. No studies eliminated patients with obvious medical causes of dyspnea. Most studies used the Triage BNP assay; all utilized a clinical reference standard. Pooled sensitivity and specificity at a BNP cutoff of 100â105 pg/ml were 90% and 74% with negative likelihood ratio (LR) of 0.14; pooled sensitivity was 81% with specificity of 90% at cutoffs between 300 and 400 pg/ml with positive LR of 7.6.</p> <p>Conclusion</p> <p>Our analysis suggests that BNP has moderate accuracy in detecting HF in the ED. Our results suggest utilizing a BNP of less than 100 pg/ml to rule out HF and a BNP of greater than 400 pg/ml to diagnose HF. Many studies were of marginal quality, and all included patients with varying degrees of diagnostic uncertainty. Further studies focusing on patients with diagnostic uncertainty will clarify the real-world utility of BNP in the emergency management of dyspnea.</p
SEIS: Insightâs Seismic Experiment for Internal Structure of Mars
By the end of 2018, 42 years after the landing of the two Viking seismometers
on Mars, InSight will deploy onto Marsâ surface the SEIS (Seismic Experiment for Internal
Structure) instrument; a six-axes seismometer equipped with both a long-period three-axes
Very Broad Band (VBB) instrument and a three-axes short-period (SP) instrument. These
six sensors will cover a broad range of the seismic bandwidth, from 0.01 Hz to 50 Hz,
with possible extension to longer periods. Data will be transmitted in the form of three
continuous VBB components at 2 sample per second (sps), an estimation of the short period
energy content from the SP at 1 sps and a continuous compound VBB/SP vertical axis at
10 sps. The continuous streams will be augmented by requested event data with sample
rates from 20 to 100 sps. SEIS will improve upon the existing resolution of Vikingâs Mars
seismic monitoring by a factor of ⌠2500 at 1 Hz and ⌠200 000 at 0.1 Hz. An additional
major improvement is that, contrary to Viking, the seismometers will be deployed via a
robotic arm directly onto Marsâ surface and will be protected against temperature and wind
by highly efficient thermal and wind shielding. Based on existing knowledge of Mars, it is
reasonable to infer a moment magnitude detection threshold of Mw ⌠3 at 40⊠epicentral
distance and a potential to detect several tens of quakes and about five impacts per year. In
this paper, we first describe the science goals of the experiment and the rationale used to
define its requirements. We then provide a detailed description of the hardware, from the
sensors to the deployment system and associated performance, including transfer functions
of the seismic sensors and temperature sensors. We conclude by describing the experiment
ground segment, including data processing services, outreach and education networks and
provide a description of the format to be used for future data distribution
Recommended from our members
SEIS: Insightâs Seismic Experiment for Internal Structure of Mars
By the end of 2018, 42 years after the landing of the two Viking seismometers on Mars, InSight will deploy onto Marsâ surface the SEIS (Seismic Experiment for Internal Structure) instrument; a six-axes seismometer equipped with both a long-period three-axes Very Broad Band (VBB) instrument and a three-axes short-period (SP) instrument. These six sensors will cover a broad range of the seismic bandwidth, from 0.01 Hz to 50 Hz, with possible extension to longer periods. Data will be transmitted in the form of three continuous VBB components at 2 sample per second (sps), an estimation of the short period energy content from the SP at 1 sps and a continuous compound VBB/SP vertical axis at 10 sps. The continuous streams will be augmented by requested event data with sample rates from 20 to 100 sps. SEIS will improve upon the existing resolution of Vikingâs Mars seismic monitoring by a factor of âŒ2500 at 1 Hz and âŒ200000 at 0.1 Hz. An additional major improvement is that, contrary to Viking, the seismometers will be deployed via a robotic arm directly onto Marsâ surface and will be protected against temperature and wind by highly efficient thermal and wind shielding. Based on existing knowledge of Mars, it is reasonable to infer a moment magnitude detection threshold of âŒ3 at 40â epicentral distance and a potential to detect several tens of quakes and about five impacts per year. In this paper, we first describe the science goals of the experiment and the rationale used to define its requirements. We then provide a detailed description of the hardware, from the sensors to the deployment system and associated performance, including transfer functions of the seismic sensors and temperature sensors. We conclude by describing the experiment ground segment, including data processing services, outreach and education networks and provide a description of the format to be used for future data distribution