934 research outputs found

    Single production of excited electrons at future e^-e^+, ep and pp colliders

    Full text link
    We analyzed the potential of the LC with s=0.5\sqrt{s}=0.5 TeV, LC×\timesLHC based ep collider with s=3.74\sqrt{s}=3.74 TeV and LHC with s=14\sqrt{s}=14 TeV to search for excited electrons through transition magnetic type couplings with gauge bosons. The e⋆→eγe^{\star}\to e\gamma signal and corresponding backgrounds are studied in detail.Comment: 11 pages, 11 figures, 3 table

    Evaluation of the relationship between stylohyoid complex morphology and maxillary/mandibular position using cone beam computed tomography

    Get PDF
    Background: The aim of this study was to examine the morphologic features of the stylohyoid complex (SHC) and its relation to maxillomandibular position using three-dimensional cone beam computed tomography (CBCT) images. Materials and methods: CBCT images from 157 individuals (74 females, 83 males) were analysed in this study. SHC length, width, and sagittal and transverse angles were measured. The subjects were grouped as skeletal class I, II, and III in order to determine the relative positions of the maxilla and mandible in the sagittal plane and as hypodivergent, normodivergent, and hyperdivergent according to the vertical rotation of the mandible in relation to the skull base. Mann-Whitney U and Kruskal-Wallis H tests were used for statistical analysis. Results: Mean SHC length was 23.56 ± 8.05 mm on the right side and 22.0 ± 6.51 mm on the left; mean SHC width was 3.31 ± 1.40 mm on the right and 2.93 ± 1.30 mm on the left. Mean sagittal angle was 27.43 ± 6.75° on the right side, 27.70 ± 6.51° on the left; mean transverse angle was 70.39 ± 4.59° on the right side and 71.79 ± 4.99° on the left. The only significant difference based on skeletal classification was greater SHC length among males compared to females in the class III group (p < 0.05). Conclusions: No significant relationship was observed between SHC morphology and position of the maxilla or mandible. However, the gender difference observed among class III subjects suggests that SHC morphology may be affected by craniofacial morphology. Maxillofacial surgeons should investigate this anatomical landmark variation before surgical interventions involving this region, such as temporomandibular joint procedures

    Effect of finishing on performance characteristics of woven and warp-knitted terry fabrics

    Get PDF
    The influence of some finishing processes has been studied on the performance characteristics of woven and warp-knitted terry fabrics with open-end pile warp. Terry fabrics of similar structural parameters have been produced by weaving or warp knitting and then subjected to finishing processes which are commonly applied by the textile industry. Samples are extracted at different stages of the finishing processes. Water absorption behavior, structural parameters, and mechanical properties are evaluated and the results are compared by statistical analysis of the obtained data. It is observed that compared to greige terry fabrics, the finishing treatment increases basis weight and dimensional stability due to shrinkage occurred with relaxation, water absorption rate due to the removal of size and other hydrophobic substances, and elongation ratio because of the elimination of size film during pretreatment processing. Woven terry fabrics give higher strength values and warp-knitted terry fabrics show higher elongation

    Integrated Lax Formalism for PCM

    Full text link
    By solving the first-order algebraic field equations which arise in the dual formulation of the D=2 principal chiral model (PCM) we construct an integrated Lax formalism built explicitly on the dual fields of the model rather than the currents. The Lagrangian of the dual scalar field theory is also constructed. Furthermore we present the first-order PDE system for an exponential parametrization of the solutions and discuss the Frobenious integrability of this system.Comment: 24 page

    Phase diagrams of Kitaev models for arbitrary magnetic field orientations

    Get PDF
    The Kitaev model is an exactly solvable quantum spin model within the language of constrained real fermions. In spite of numerous studies for magnetic fields along special orientations, there is a limited amount of knowledge on the complete field-angle characterization, which can provide valuable information on the existence of fractionalized excitations. For this purpose, we first study the pure ferromagnetic and antiferromagnetic Kitaev models for arbitrary external magnetic field directions via a mean-field theory, showing that there are many topological phases with different (or zero) Chern numbers, depending on the magnetic field strength and orientations. However, a realistic description of the candidate Kitaev materials, within the edge-sharing octahedra paradigm, requires additional coupling terms, including a large off-diagonal term Γ along with possible anisotropic corrections Γp. It is therefore not sufficient to rely on the topological properties of the bare Kitaev model as the basis for the observed thermal Hall-conductivity signals, and an understanding of these extended Kitaev models with a complete field response is demanded. Starting from the zero-field phase diagram of K−Γ−Γp models, we identify, besides the Kitaev spin liquid phase, antiferromagnetic zigzag, ferromagnetic phases, as well as an unusual Kitaev(-Γ) spin liquid phase. The magnetic field response of these phases for arbitrary field orientations provides a remarkably rich phase diagram. For an extended parameter range and just above the critical field where the zigzag phase is suppressed, there is an intermediate phase region with suppressed energy gaps and substantial spin fractionalization. To comply our findings with experiments, we also reproduce a large asymmetry in the extent of this intermediate phases specifically for the two different field directions θ=±60o with respect to the normal to the plane of the honeycomb lattice

    Molecular Imprinting Applications in Forensic Science.

    Get PDF
    Producing molecular imprinting-based materials has received increasing attention due to recognition selectivity, stability, cast effectiveness, and ease of production in various forms for a wide range of applications. The molecular imprinting technique has a variety of applications in the areas of the food industry, environmental monitoring, and medicine for diverse purposes like sample pretreatment, sensing, and separation/purification. A versatile usage, stability and recognition capabilities also make them perfect candidates for use in forensic sciences. Forensic science is a demanding area and there is a growing interest in molecularly imprinted polymers (MIPs) in this field. In this review, recent molecular imprinting applications in the related areas of forensic sciences are discussed while considering the literature of last two decades. Not only direct forensic applications but also studies of possible forensic value were taken into account like illicit drugs, banned sport drugs, effective toxins and chemical warfare agents in a review of over 100 articles. The literature was classified according to targets, material shapes, production strategies, detection method, and instrumentation. We aimed to summarize the current applications of MIPs in forensic science and put forth a projection of their potential uses as promising alternatives for benchmark competitors

    Purificación de aceite de girasol crudo desgomado mediante estructuras metal-orgánicas seleccionadas como adsorbentes

    Get PDF
    The aims of this study were to investigate the effectiveness of seven metal-organic frameworks (MOFs) as adsorbents for the purification of crude degummed sunflower oil, and to compare their effectiveness with three natural clays. The oil was treated with two different addition levels (0.05% and 0.3%, w/w), and two different treatment times (0.5 h and 3.0 h) under constant temperature (25 °C). The results indicated that all adsorbent treatments improved the oil’s physico-chemical properties. Most importantly, the oil’s free fatty acid, peroxide and p-anisidine values were significantly reduced by Ti-MOF and γ-CD-MOF in comparison with the control sample. The oil showed no contamination by the metals during the MOF treatments. There were no significant changes in the fatty acid or sterol composition of the treated oil, while α-tocopherol contents decreased to some extent. This study proved the possibility of MOF as adsorbents for crude oil purification, and showed the great potential of Ti-MOF and γ-CD-MOF as promising adsorbents.Los objetivos de este estudio fueron investigar la efectividad de siete estructuras metal-orgánicas (MOFs) como adsorbentes para la purificación de aceite de girasol crudo desgomado y comparar su efectividad con tres arcillas naturales. El aceite fué tratado adicionando dos cantidades diferentes (0,05% y 0,3%, p/p) y dos tiempos de de tratamiento (0,5 h y 3,0 h) a temperatura constante (25 °C). Los resultados indicaron que todos los tratamientos con adsorbentes mejoraron las propiedades físico-químicas del aceite. Más importante aún, los valores de acidez libre, peróxidos y p-anisidina se redujeron significativamente con Ti-MOF y γ-CD-MOF en comparación con la muestra de control. Los aceites mostraron no haberse contaminado con los metales durante los tratamientos de MOFs. No hubo cambios significativos en las composiciones de ácidos grasos y esteroles de los aceites tratados, mientras que los contenidos de α-tocoferol disminuyeron a cierto nivel. En consecuencia, este estudio demostró la posibilidad de que los MOFs sean adsorbentes para la purificación de aceites crudos, y demostró el gran potencial de Ti-MOF y γ-CD-MOF como adsorbentes

    4-[2-(4-Meth­oxy­phen­yl)eth­yl]-3-(thio­phen-2-ylmeth­yl)-1H-1,2,4-triazol-5(4H)-one monohydrate

    Get PDF
    In the title compound, C16H17N3O2S·H2O, the triazole ring makes a dihedral angle of 34.63 (6)° with the benzene ring. The thio­phene ring is disordered over two orientations [occupancy ratio = 0.634 (4):0.366 (4)] which make dihedral angles of 54.61 (16) and 54.57 (31)° with the triazole ring. Inter­molecular N—H⋯O and O—H⋯O hydrogen bonds stabilize the crystal structure

    Investigation of temporal bone asymmetry in cases with unilateral tinnitus: morphometric and multicentric clinical study

    Get PDF
    The aim of this multicentric study was to compare the anatomical structures of temporal bone in patients with unilateral tinnitus with their healthy ears. We also aimed at evaluating whether age and gender-related asymmetrical changes occur in temporal bones or not. Fifty two ears of 26 patients who had unilateral tinnitus were included into the retrospective study. The patients who had subjective nonpulsatile tinnitus and who previously had temporal computed tomography according to their file records were accepted to study. Temporal CT scans and audiometric results of patients were examined retrospectively. Middle ear volume, diameter of internal acoustic meats and diameter of jugular bulb were evaluated by both anatomist and radiologist, interobserverly. Internal acoustic meats and jugular bulb were found larger in the ears that had tinnitus than healthy ears; however, there was no statistically significance. The stereological morphometrical study of temporal bone asymmetry in humans correlate with sex is of importance for both otolarygologs and anatomists. These results will contribute to data on middle ear volume, internal acustic meats and jugular bulb sizes

    Interactions between Hazelnut (Corylus avellana L.) Protein and Phenolics and In Vitro Gastrointestinal Digestibility

    Get PDF
    In this study, we investigated the formation of protein–phenolic complexes from dephenolized hazelnut meal protein isolates (dHPI) and hazelnut skin phenolic extracts (HSE) and their effects on the bioaccessibility of both hazelnut proteins and phenolics. The dHPI–HSE complexes were of considerable size and were dependent on HSE concentration due to aggregation. Although catechin was the main component of HSE, it did not cause aggregation, except for a slight rise in particle size. According to fluorescence quenching, the hazelnut protein–phenolic extract complex had a linear Stern–Volmer plot expressing static quenching between 0–0.5 mM concentration; the interaction was mainly dependent on hydrogen bonding and van der Waals forces (ΔH < 0 and ΔS < 0), and the reaction was spontaneous (ΔG < 0). According to Fourier transform infrared (FTIR) spectroscopy results, higher phenolic extract concentration caused an increase in irregular structures in hazelnut protein, while the lowest catechin and phenolic concentration altered the regular structure. Skin extracts did not alter the digestibility of dephenolized proteins, but dephenolization reduced the degree of hydrolysis by pancreatin. The formation of the protein–phenolic complex had a beneficial effect on the bioaccessibility of hazelnut skin phenols, predominantly those on the galloylated form of the catechins, such as gallocatechin gallate and epigallocatechin gallate. Thus, the bioaccessibility and antioxidant activity analysis results showed that protein–phenolic complexes obtained from hazelnut meal and skin may promote the transition of phenolic compounds from the gastrointestinal tract without degradation
    • …
    corecore