246 research outputs found

    Role of Protein Kinase C in Podocytes and Development of Glomerular Damage in Diabetic Nephropathy

    Get PDF
    The early glomerular changes in diabetes include a podocyte phenotype with loss of slit diaphragm proteins, changes in the actin cytoskeleton and foot process architecture. This review focusses on the role of the Protein Kinase C family in podocytes and points out the differential roles of classical, novel and atypical PKCs in podocytes. Some PKC-isoforms are indispensable for proper glomerular development and slit diaphragm maintenance whereas others might be harmful when activated in the diabetic milieu. Therefore some might be interesting treatment targets in the early phase of diabetes

    Grain-filling characteristics and yield formation of wheat in two different soil fertility fields in the Huang–Huai–Hai Plain

    Get PDF
    Clarifying factors that underpinning the variation in wheat yield components between high and middle soil fertility fields is critical to increase grain production and narrow yield gap for smallholder farming systems in the Huang–Huai–Hai Plain (3HP), which characterized by a large variation in soil fertility. Two-year field experiments were conducted to investigate wheat tillering, leaf photosynthesis, and grain filling characteristics in different soil fertility fields: high soil fertility field (HF) and middle soil fertility field (MF). Results showed that the spike formation rate in HF was 12.7%–13.0% higher than that in MF, leading to an 18.0%–19.8% increase in spike number. In addition, HF improved canopy light interception and leaf photosynthesis characteristics after anthesis and delayed leaf senescence, contributing to the increase in both the active grain filling period and grain filling rate. This resulted in a higher 1,000 grain weight in HF, which was 8.2%–8.3% higher than that in MF. Compared to MF, HF obtained higher yields at 9,840 kg ha−1 in 2017/18 and 11,462 kg ha−1 in 2018/19, respectively. In summary, higher spike number and 1,000-grain weight, which were mediated by spike-formation rate, maximization of light interception and improved leaf photosynthesis. These results would have important implications for narrowing yield gap between MF and HF in the 3HP

    Efficacy of roxithromycin with gamma globulin in children with mycoplasma pneumonia and its effect on immunity

    Get PDF
    Purpose: To determine the efficacy of roxithromycin plus gamma globulin in the treatment of children with mycoplasma pneumonia (MPP) and its effect on immune function.Methods: From January 2019 to January 2021, 100 children with MPP assessed for eligibility in Qingdao Women and Children's Hospital, Shandong Province, China, were recruited and randomized (1:1) to receive either gamma globulin (control group) or roxithromycin plus gamma globulin (study group). Levels of tumor necrosis factor (TNF)-α, immunoglobulin (Ig)A, IgM, and IgG were evaluated. Clinical indices, including fever reduction, cough disappearance, duration of hospital stay, etc were also assessed.Results: The study group had a significantly higher clinical efficacy (88 %) than the control group (68 %) (p < 0.05). After treatment, patients in the study group showed lower levels of tumor necrosis factor (TNF)-α than those in the control group (p < 0.05). The eligible patients given roxithromycin plus gamma globulin showed significantly higher levels of immunoglobulin (Ig)A, IgM, and IgG versus those given gamma globulin alone (p < 0.05). Patients in the study group had a shorter time lapse before fever reduction, cough disappearance, lung sign disappearance, and duration of hospital stay than those in the control group (p < 0.05).Conclusion: Roxithromycin plus gamma globulin demonstrate significant benefits in the treatment of children with MPP by mitigating inflammatory response, enhancing immune function, and also significantly alleviating clinical symptoms. Thus, the combination treatment shows good potentials for use in clinical practice

    The profit and risk in the interdisciplinary behavior

    Get PDF
    Evaluating the influence of interdisciplinary research is important to the development of science. This work considers the large and small disciplines, calculates the interdisciplinary distance, and analyzes the influence of interdisciplinary behavior and interdisciplinary distance in the academic network. The results show that the risk of interdisciplinary behavior in the large discipline is more significant than the benefits. The peer in the small disciplines will tend to agree with the results of the small discipline across the large discipline. We further confirmed this conclusion by utilizing PSM-DID. The analysis between interdisciplinary distance and scientists’ influence shows that certain risks will accompany any distance between disciplines. However, there still exists a “Sweet Spot” which could bring significant rewards. Overall, this work provides a feasible approach to studying and understanding interdisciplinary behaviors in science

    Phosphorylation of TGB1 by protein kinase CK2 promotes barley stripe mosaic virus movement in monocots and dicots.

    Get PDF
    The barley stripe mosaic virus (BSMV) triple gene block 1 (TGB1) protein is required for virus cell-to-cell movement. However, little information is available about how these activities are regulated by post-translational modifications. In this study, we showed that the BSMV Xinjiang strain TGB1 (XJTGB1) is phosphorylated in vivo and in vitro by protein kinase CK2 from barley and Nicotiana benthamiana. Liquid chromatography tandem mass spectrometry analysis and in vitro phosphorylation assays demonstrated that Thr-401 is the major phosphorylation site of the XJTGB1 protein, and suggested that a Thr-395 kinase docking site supports Thr-401 phosphorylation. Substitution of Thr-395 with alanine (T395A) only moderately impaired virus cell-to-cell movement and systemic infection. In contrast, the Thr-401 alanine (T401A) virus mutant was unable to systemically infect N. benthamiana but had only minor effects in monocot hosts. Substitution of Thr-395 or Thr-401 with aspartic acid interfered with monocot and dicot cell-to-cell movement and the plants failed to develop systemic infections. However, virus derivatives with single glutamic acid substitutions at Thr-395 and Thr-401 developed nearly normal systemic infections in the monocot hosts but were unable to infect N. benthamiana systemically, and none of the double mutants was able to infect dicot and monocot hosts. The mutant XJTGB1T395A/T401A weakened in vitro interactions between XJTGB1 and XJTGB3 proteins but had little effect on XJTGB1 RNA-binding ability. Taken together, our results support a critical role of CK2 phosphorylation in the movement of BSMV in monocots and dicots, and provide new insights into the roles of phosphorylation in TGB protein functions

    A Review on the Application of 3D Printing Technology in Pavement Maintenance

    Get PDF
    To examine the application and significance of 3D printing technology in pavement maintenance engineering, a review of the current developments in principles, types, materials, and equipment for 3D printing was conducted. A comparison and analysis of traditional methods and 3D printing for asphalt pavement maintenance led to an investigation of 3D asphalt printing technologies and equipment. As a result, the following suggestions and conclusions are proposed: 3D printing technology can increase the level of automation and standardization of pavement maintenance engineering, leading to effective improvements in worker safety, climate adaptability, repair accuracy, etc. For on-site repair of cracks and minor potholes, utilizing material extrusion technology a mobile 3D asphalt printing robot with a screw extrusion device can be used for accuracy and flexibility. For efficient repair of varying cracks, material jetting technology with a UAV equipped with a 3D printing air-feeding device can be employed

    Aloperine attenuates carbon tetrachloride-induced mouse hepatic injury via Nrf2/HO-1 pathway

    Get PDF
    Purpose: To investigate whether aloperine pretreatment ameliorates acute liver injury in carbon tetrachloride (CCl4)-treated mice.Methods: Mice were injected with CCl4 and orally administered aloperine. Blood samples and liver tissues were used for histopathological and biochemical analyses, respectively. Protein expression levels were determined by western blotting.Results: Histopathological analysis indicate that aloperine pretreatment significantly alleviated CCl4- induced mouse hepatic injury. CCl4 treatment induced the upregulation of aspartate aminotransferase (AST), alkaline phosphatase (ALP), alanine amino transferase (ALT), and total bilirubin (p < 0.05). However, these alterations were significantly inhibited by aloperine treatment. Moreover, aloperine pretreatment markedly decreased (p < 0.05) the CCl4-induced expression of oxidative stress biomarkers, including malondrialdeline (MDA), glutathione (GSH), catalase (CAT), and  superoxide dismutase (SOD). Compared to the control group, the protein levels of Nrf2, HO-1, iNOS, and COX-2 were significantly increased in the CCl4 group, while Nrf2 and HO-1 were upregulated. Furthermore, iNOS and COX-2 were downregulated in mouse liver in CCl4 + aloperine group compared to CCl4 group in a concentration-dependent manner (p < 0.05).Conclusion: Aloperine pretreatment appears to markedly upregulate Nrf2 and HO-1 and downregulate iNOS and COX-2 to suppress hepatic injury in mice. Thus, aloperine is a promising treatment for acute liver injury. Keywords: Hepatic injury, Aloperine, Oxidative stress, Nrf2/HO-1 pathwa

    Interpretable Visual Understanding with Cognitive Attention Network

    Full text link
    While image understanding on recognition-level has achieved remarkable advancements, reliable visual scene understanding requires comprehensive image understanding on recognition-level but also cognition-level, which calls for exploiting the multi-source information as well as learning different levels of understanding and extensive commonsense knowledge. In this paper, we propose a novel Cognitive Attention Network (CAN) for visual commonsense reasoning to achieve interpretable visual understanding. Specifically, we first introduce an image-text fusion module to fuse information from images and text collectively. Second, a novel inference module is designed to encode commonsense among image, query and response. Extensive experiments on large-scale Visual Commonsense Reasoning (VCR) benchmark dataset demonstrate the effectiveness of our approach. The implementation is publicly available at https://github.com/tanjatang/CANComment: ICANN2

    Modification of microcrystalline cellulose with acrylamide under microwave irradiation and its application as flocculant.

    Get PDF
    Grafting polyacrylamide (PAM) chains onto microparticles may combine the advantages of the flocculation property of the former and the fast sedimentation of the later to realize better flocculation performance. In this work, inexpensive microcrystalline cellulose (MCC) microparticles, and monomer of acrylamide (AM) were mixed, and then irradiated under microwave. The obtained material was characterized by Fourier transform infrared spectroscopy and X-ray diffraction, and the results demonstrated successful modification of MCC with AM on the particle surface. The modification procedure has been carefully investigated to obtain an optimum preparation condition. Kaolin suspension was selected as a model to evaluate the flocculation properties of the obtained AM-MCC. Our results indicate that the AM-MCC with the highest grafting ratio of 95.5% exhibits the best flocculation performance, which is even better than that of PAM, and the turbidity can be decreased to 1.4% of the naked kaolin suspension within 2.5 min. Therefore, this work provides a low cost strategy to prepare biodegradable AM-MCC, which may have promising potential application in the water treatment and other fields
    • 

    corecore